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Abstract

Recently there has been significant interest in
training machine-learning models at low preci-
sion: by reducing precision, one can reduce com-
putation and communication by one order of
magnitude. We examine training at reduced pre-
cision, both from a theoretical and practical per-
spective, and ask: is it possible to train models
at end-to-end low precision with provable guar-
antees? Can this lead to consistent order-of-
magnitude speedups? We mainly focus on linear
models, and the answer is yes for linear models.
We develop a simple framework called ZipML
based on one simple but novel strategy called
double sampling. Our ZipML framework is able
to execute training at low precision with no bias,
guaranteeing convergence, whereas naive quanti-
zation would introduce significant bias. We val-
idate our framework across a range of applica-
tions, and show that it enables an FPGA proto-
type that is up to 6.5× faster than an implemen-
tation using full 32-bit precision. We further de-
velop a variance-optimal stochastic quantization
strategy and show that it can make a significant
difference in a variety of settings. When applied
to linear models together with double sampling,
we save up to another 1.7× in data movement
compared with uniform quantization. When
training deep networks with quantized models,
we achieve higher accuracy than the state-of-the-
art XNOR-Net.
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Figure 1. Overview of theoretical results and highlights of empir-
ical results. See Introduction for details.

1. Introduction
The computational cost and power consumption of today’s
machine learning systems are often driven by data move-
ment, and by the precision of computation. In our ex-
perience, in applications such as tomographic reconstruc-
tion, anomaly detection in mobile sensor networks, and
compressive sensing, the overhead of transmitting the data
samples can be massive, and hence performance can hinge
on reducing the precision of data representation and asso-
ciated computation. A similar trend is observed in deep
learning, where impressive progress has been reported
with systems using end-to-end reduced-precision represen-
tations (Hubara et al., 2016; Rastegari et al., 2016; Zhou
et al., 2016; Miyashita et al., 2016). The empirical suc-
cess of these works inspired this paper, in which we try
to provide a theoretical understanding of end-to-end low-
precision training for machine learning models. In this
context, the motivating question behind our work is: When
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training general machine learning models, can we lower
the precision of data representation, communication, and
computation, while maintaining provable guarantees?

In this paper, we develop ZipML, a general framework to
answer this question, and present results obtained in the
context of this ZipML framework. Figure 1 encapsulates
our results: (a) for linear models, we are able to lower
the precision of both computation and communication, in-
cluding input samples, gradients, and model, by up to 16
times, while still providing rigorous theoretical guarantees;
(b) our FPGA implementation of this framework achieves
up to 6.5× speedup compared with a 32-bit FPGA imple-
mentation, or with a 10-core CPU running Hogwild!; (c)
we are able to decrease data movement by 2.7× for tomo-
graphic reconstruction, while obtaining a negligible qual-
ity decrease. Elements of our framework generalize to (d)
model compression for training deep learning models. In
the following, we describe our technical contributions in
more detail.

1.1. Summary of Technical Contributions

We consider the following problem in training generalized
linear models:

min
x

:
1

2K

K∑
k=1

l(a>k x, bk)2 +R(x), (1)

where l(·, ·) is a loss function andR is a regularization term
that could be `1 norm, `2 norm, or even an indicator func-
tion representing the constraint. The gradient at the sample
(ak, bk) is:

gk := ak
∂l(a>k x, bk)

∂a>k x
.

We denote the problem dimension by n. We consider
the properties of the algorithm when a lossy compres-
sion scheme is applied to the data (samples), gradient,
and model, to reduce the communication cost of the
algorithm—that is, we consider quantization functions Qg ,
Qm, andQs for gradient, model, and samples, respectively,
in the gradient update:

xt+1 ← proxγR(·) (xt − γQg(gk(Qm(xt), Qs(at)))) ,

(2)

where the proximal operator is defined as

proxγR(·)(y) = argmin
x

1

2
‖x− y‖2 + γR(x).

Our Results. We summarize our results as follows.

Linear Models. When l(·, ·) is the least squares loss, we
first notice that simply doing stochastic quantization of data

samples (i.e., Qs) introduces bias of the gradient estimator
and therefore SGD would converge to a different solution.
We propose a simple solution to this problem by introduc-
ing a double sampling strategy Q̃s that uses multiple sam-
ples to eliminate the correlation of samples introduced by
the non-linearity of the gradient. We analyze the additional
variance introduced by double sampling, and find that its
impact is negligible in terms of convergence time as long
as the number of bits used to store a quantized sample is at
least Θ(log n/σ), where σ2 is the variance of the standard
stochastic gradient. This implies that the 32-bit precision
may be excessive for many practical scenarios.

We build on this result to obtain an end-to-end quantiza-
tion strategy for linear models, which compresses all data
movements. For certain settings of parameters, end-to-end
quantization adds as little as a constant factor to the vari-
ance of the entire process.

Optimal Quantization and Extension to Deep Learning.
We then focus on reducing the variance of stochastic quan-
tization. We notice that different methods for setting the
quantization points have different variances—the standard
uniformly-distributed quantization strategy is far from op-
timal in many settings. We formulate this as an indepen-
dent optimization problem, and solve it optimally with an
efficient dynamic programming algorithm that only needs
to scan the data in a single pass. When applied to linear
models, this optimal strategy can save up to 1.6× commu-
nication compared with the uniform strategy.

We perform an analysis of the optimal quantizations for
various settings, and observe that the uniform quantiza-
tion approach popularly used by state-of-the-art end-to-end
low-precision deep learning training systems when more
than 1 bit is used is suboptimal. We apply optimal quan-
tization to models and show that, with one standard neural
network, we outperform the uniform quantization used by
XNOR-Net and a range of other recent approaches. This
is related, but different, to recent work on model compres-
sion for inference (Han et al., 2016). To the best of our
knowledge, this is the first time such optimal quantization
strategies have been applied to training.

2. Linear Models
In this section, we focus on linear models with possibly
non-smooth regularization. We have labeled data points
(a1, b1), (a2, b2), . . . , (aK , bK) ∈ Rn × R, and our goal
is to minimize the function

F (x) =
1

K

K∑
k=1

‖a>k x− bk‖22︸ ︷︷ ︸
=:f(x)

+R(x) , (3)
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Figure 2. A schematic representation of the computational model.

i.e., minimize the empirical least squares loss plus a non-
smooth regularization R(·) (e.g., `1 norm, `2 norm, and
constraint indicator function). SGD is a popular approach
for solving large-scale machine learning problems. It
works as follows: at step xt, given an unbiased gradient
estimator gt, that is, E(gt) = ∇f(xt), we update xt+1 by

xt+1 = proxγtR(·) (xt − γtgt) ,

where γt is the predefined step length. SGD guarantees the
following convergence property:

Theorem 1. [e.g., (Bubeck, 2015), Theorem 6.3] Let the
sequence {xt}Tt=1 be bounded. Appropriately choosing the
steplength, we have the following convergence rate for (3):

F

(
1

T

T∑
t=0

xt

)
−min

x
F (x) ≤ Θ

(
1

T
+

σ√
T

)
(4)

where σ is the upper bound of the mean variance

σ2 ≥ 1

T

T∑
t=1

E‖gt −∇f(xt)‖2.

There are three key requirements for SGD to converge:

1. Computing stochastic gradient gt is cheap;
2. The stochastic gradient gt should be unbiased;
3. The stochastic gradient variance σ dominates the con-

vergence efficiency, so it needs to be controlled appro-
priately.

The common choice is to uniformly select one sample:

gt = g
(full)
t := aπ(t)(a

>
π(t)x− bπ(t)). (5)

(π(t) is a uniformly random integer from 1 to K). We
abuse the notation and let at = aπ(t). Note that g(full)

t

is an unbiased estimator E[g
(full)
t ] = ∇f(xt). Although it

has received success in many applications, if the precision
of sample at can be further decreased, we can save poten-
tially one order of magnitude bandwidth of reading at (e.g.,

in sensor networks) and the associated computation (e.g.,
each register can hold more numbers). This motivates us
to use low-precision sample points to train the model. The
following will introduce the proposed low-precision SGD
framework by meeting all three factors for SGD.

2.1. Bandwidth-Efficient Stochastic Quantization

We propose to use stochastic quantization to generate a
low-precision version of an arbitrary vector v in the fol-
lowing way. Given a vector v, let M(v) be a scaling factor
such that −1 ≤ v/M(v) ≤ 1. Without loss of generality,
let M(v) = ||v||2. We partition the interval [−1, 1] using
s + 1 separators: −1 = l0 ≤ l1... ≤ ls = 1; for each
number v in v/M(v), we quantize it to one of two nearest
separators: li ≤ v ≤ li+1. We denote the stochastic quan-
tization function by Q(v, s) and choose the probability of
quantizing to different separators such that E[Q(v, s)] = v.
We use Q(v) when s is not relevant.

2.2. Double Sampling for Unbiased Stochastic Gradient
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The naive way to use low-
precision samples ât :=
Q(at) is

ĝt := âtâ
>
t x− âtbt.

However, the naive ap-
proach does not work
(that is, it does not guaran-
tee convergence), because
it is biased:

E[ĝt] := ata
>
t x− atbt +Dax,

where Da is diagonal and its ith diagonal element is

E[Q(ai)
2]− a2i .

Since Da is non-zero, we obtain a biased estimator of the
gradient, so the iteration is unlikely to converge. The figure
on the right illustrates the bias caused by a non-zeroDa. In
fact, it is easy to see that in instances where the minimizer
x is large and gradients become small, we will simply di-
verge.

We now present a simple method to fix the biased gradient
estimator. We generate two independent random quantiza-
tions and revise the gradient:

gt := Q1(at)(Q2(at)
>x− bt) . (6)

This gives us an unbiased estimator of the gradient.

Overhead of Storing Samples. The reader may have no-
ticed that one implication of double sampling is the over-
head of sending two samples instead of one. We note that
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this will not introduce 2× overhead in terms of data com-
munication. Instead, we start from the observation that the
two samples can differ by at most one bit. For example,
to quantize the number 0.7 to either 0 or 1. Our strategy
is to first store the smallest number of the interval (here
0), and then for each sample, send out 1 bit to represent
whether this sample is at the lower marker (0) or the up-
per marker (1). Under this procedure, once we store the
base quantization level, we will need one extra bit for each
additional sample. More generally, since samples are used
symmetrically, we only need to send a number represent-
ing the number of times the lower quantization level has
been chosen among all the sampling trials. Thus, sending
k samples only requires log2 k more bits.

2.3. Variance Reduction

From Theorem 1, the mean variance 1
T

∑
t E‖gt −

∇f(x)‖2 will dominate the convergence efficiency. It is
not hard to see that the variance of the double sampling
based stochastic gradient in (6) can be decomposed into

E‖gt −∇f(xt)‖2 ≤ E‖g(full)
t −∇f(xt)‖2

+ E‖gt − g
(full)
t ‖2.

(7)

The first term is from the full stochastic gradient, which can
be reduced by using strategies such as mini-batch, weight
sampling, and so on. Thus, reducing the first term is an
orthogonal issue for this paper. Rather, we are interested in
the second term, which is the additional cost of using low-
precision samples. All strategies for reducing the variance
of the first term can seamlessly combine with the approach
of this paper. The additional cost can be bounded by the
following lemma.

Lemma 1. The stochastic gradient variance using double
sampling in (6) E‖gt − g

(full)
t ‖2 can be bounded by

Θ
(
T V(at)(T V(at)‖x� x‖+ ‖a>t x‖2 + ‖x� x‖‖at‖2)

)
,

where T V(at) := E‖Q(at)− at‖2 and � denotes the ele-
ment product.

Thus, minimizing T V(at) is key to reducing variance.

Uniform quantization. It makes intuitive sense that, the
more levels of quantization, the lower the variance. The
following makes this quantitative dependence precise.

Lemma 2. [(Alistarh et al., 2016)] Assume that quanti-
zation levels are uniformly distributed. For any vector
v ∈ Rn, we have that E[Q(v, s)] = v. Further, the vari-
ance of uniform quantization with s levels is bounded by

T Vs(v) := E[‖Q(v, s)−v‖22] ≤ min(n/s2,
√
n/s))‖v‖22. .

Together with other results, it suggests the stochastic gra-
dient variance of using double sampling is bounded by

E‖gt −∇f(xt)‖2 ≤ σ2
(full) + Θ

(
n/s2

)
,

where σ2
(full) ≥ E‖g(full)

t −∇f(x)‖2 is the upper bound
of using the full stochastic gradient, assuming that x and
all ak’s are bounded. Because the number of quantiza-
tion levels s is exponential to the number of bits we use
to quantize, to ensure that these two terms are comparable
(using a low-precision sample does not degrade the conver-
gence rate), the number of bits only needs to be greater than
Θ(log n/σ(full)). Even for linear models with millions of
features, 32 bits is likely to be “overkill.”

3. Optimal Quantization Strategy for
Reducing Variance

In the previous section, we have assumed uniformly dis-
tributed quantization points. We now investigate the choice
of quantization points and present an optimal strategy to
minimize the quantization variance term T V(at).

Problem Setting. Assume a set of real numbers Ω =
{x1, . . . , xN} with cardinality N . WLOG, assume that all
numbers are in [0, 1] and that x1 ≤ . . . ≤ xN .

The goal is to partition I = {Ij}sj=1 of [0, 1] into s disjoint
intervals, so that if we randomly quantize every x ∈ Ij to
an endpoint of Ij , the variance is minimal over all possible
partitions of [0, 1] into s intervals. Formally:

min
I:|I|=s

MV(I) :=
1

N

s∑
j=1

∑
xi∈Ij

err(xi, Ij)

s.t.
s⋃
j=1

Ij = [0, 1], Ij ∩ lk = ∅ for k 6= j, (8)

where err(x, I) = (b− x)(x− a) is the variance for point
x ∈ I if we quantize x to an endpoint of I = [a, b]. That
is, err(x, I) is the variance of the (unique) distribution D
supported on a, b so that EX∼D[X] = x.

Given an interval I ⊆ [0, 1], we let ΩI be the set of
xj ∈ Ω contained in I . We also define err(Ω, I) =∑
xj∈I err(xj , I). Given a partition I of [0, 1], we let

err(Ω, I) =
∑
I∈I err(Ω, I). We let the optimum solution

be I∗ = argmin|I|=k err(Ω, I), breaking ties randomly.

3.1. Dynamic Programming

We first present a dynamic programming algorithm that
solves the above problem in an exact way. In the next sub-
section, we present a more practical approximation algo-
rithm that only needs to scan all data points once.
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Optimal Quantization Points

Figure 3. Optimal quantization points calculated with dynamic
programming given a data distribution.

This optimization problem is non-convex and non-smooth.
We start from the observation that there exists an optimal
solution that places endpoints at input points.

Lemma 3. There is a I∗ so that all endpoints of any I ∈
I∗ are in Ω ∪ {0, 1}.

Therefore, to solve the problem in an exact way, we just
need to select a subset of data points in Ω as quantiza-
tion points. Define T (k,m) be the optimal total variance
for points in [0, dm] with k quantization levels choosing
dm = xm for all m = 1, 2, · · · , N . Our goal is to cal-
culate T (s,N). This problem can be solved by dynamic
programing using the following recursion

T (k,m) = min
j∈{k−1,k,··· ,m−1}

T (k − 1, j) + V (j,m),

where V (j,m) denotes the total variance of points falling
in the interval [dj , dm]. The complexity of calculating the
matrix V (·, ·) is O(N2 + N) and the complexity of calcu-
lating the matrix T (·, ·) is O(kN2). The memory cost is
O(kN +N2).

3.2. Heuristics

The exact algorithm has a complexity that is quadratic in
the number of data points, which may be impractical. To
make our algorithm practical, we develop an approximation
algorithm that only needs to scan all data points once and
has linear complexity to N .

Discretization. We can discretize the range [0, 1] into
M intervals, i.e., [0, d1), [d1, d2), · · · , [dM−1, 1] with 0 <
d1 < d2 < · · · < dM−1 < 1. We then restrict our algo-
rithms to only choose k quantization points within theseM
points, instead of all N points in the exact algorithm. The
following result bounds the quality of this approximation.

Theorem 2. Let the maximal number of data points in each
“small interval” (defined by {dm}M−1m=1 ) and the maximal
length of small intervals be bounded by bN/M and a/M ,
respectively. Let I∗ := {l∗j}

k−1
k=1 and Î∗ := {l̂∗k}

k−1
k=1 be the

optimal quantization to (8) and the solution with discretiza-
tion. Let cM/k be the upper bound of the number of small
intervals crossed by any “large interval” (defined by I∗).
Then we have the discretization error bounded by

MV(Î∗)−MV(I∗) ≤ a2bk

4M3
+
a2bc2

Mk
.

Theorem 2 suggests that the mean variance using the dis-
crete variance-optimal quantization will converge to the op-
timal with the rate O(1/Mk).

Dynamic Programming with Candidate Points. Notice
that we can apply the same dynamic programming ap-
proach given M candidate points. In this case, the total
computational complexity becomes O((k + 1)M2 + N),
with memory cost O(kM +M2). Also, to find the optimal
quantization, we only need to scan all N numbers once.
Figure 3 illustrates an example output for our algorithm.

2-Approximation in Almost-Linear Time. In the full
version of this paper (Zhang et al., 2016), we present an
algorithm which, given Ω and k, provides a split using
at most 4k intervals, which guarantees a 2-approximation
of the optimal variance for k intervals, using O(N logN)
time. This is a new variant of the algorithm by (Acharya
et al., 2015) for the histogram recovery problem. We can
use the 4k intervals given by this algorithm as candidates
for the DP solution, to get a general 2-approximation using
k intervals in time O(N logN + k3).

3.3. Applications to Deep Learning

In this section, we show that it is possible to apply optimal
quantization to training deep neural networks.

State-of-the-art. We focus on training deep neural net-
works with a quantized model. Let W be the model and
l(W) be the loss function. State-of-the-art quantized net-
works, such as XNOR-Net and QNN, replace W with the
quantized version Q(W), and optimize for

min
W

l(Q(W)).

With a properly defined ∂Q
∂W , we can apply the standard

backprop algorithm. Choosing the quantization function
Q is an important design decision. For 1-bit quantization,
XNOR-Net searches the optimal quantization point. How-
ever, for multiple bits, XNOR-Net, as well as other ap-
proaches such as QNN, resort to uniform quantization.

Optimal Model Quantization for Deep Learning. We
can apply our optimal quantization strategy and use it as the
quantization function Q in XNOR-Net. Empirically, this
results in quality improvement over the default multi-bits
quantizer in XNOR-Net. In spirit, our approach is similar
to the 1-bit quantizer of XNOR-Net, which is equivalent
to our approach when the data distribution is symmetric—
we extend this to multiple bits in a principled way. An-
other related work is the uniform quantization strategy in
log domain (Miyashita et al., 2016), which is similar to our
approach when the data distribution is “log uniform.” How-
ever, our approach does not rely on any specific assumption
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Regression
Dataset Training Set Testing Set # Features

Synthetic 10 10,000 10,000 10
Synthetic 100 10,000 10,000 100
Synthetic 1000 10,000 10,000 1,000
YearPrediction 463,715 51,630 90

cadata 10,000 10,640 8
cpusmall 6,000 2,192 12

Classification
Dataset Training Set Testing Set # Features
cod-rna 59,535 271,617 8
gisette 6,000 1,000 5,000

Deep Learning
Dataset Training Set Testing Set # Features

CIFAR-10 50,000 10,000 32× 32× 3

Tomographic Reconstruction
Dataset # Projections Volumn Size Proj. Size

128 1283 1283

Table 1. Dataset statistics.

of the data distribution. Han et al. (2016) use k-means to
compress the model for inference —k-means optimizes for
a similar, but different, objective function than ours. In this
paper, we develop a dynamic programming algorithm to do
optimal stochastic quantization efficiently.

4. Experiments
We now provide an empirical validation of our ZipML
framework.

Experimental Setup. Table 1 shows the datasets we use.
Unless otherwise noted, we always use diminishing step-
sizes α/k, where k is the current number of epoch. We
tune α for the full precision implementation, and use the
same initial step size for our low-precision implementation.
(Theory and experiments imply that the low-precision im-
plementation often favors smaller step size. Thus we do
not tune step sizes for the low-precision implementation,
as this can only improve the accuracy of our approach.)

Summary of Experiments. Due to space limitations, we
only report on Synthetic 100 for regression, and on gisette
for classification. The full version of this paper (Zhang
et al., 2016) contains (1) several other datasets, and dis-
cusses (2) different factors such as impact of the number
of features, and (3) refetching heuristics. The FPGA im-
plementation and design decisions can be found in (Kara
et al., 2017).

4.1. Convergence on Linear Models

We validate that (1) with double sampling, SGD with
low precision converges—in comparable empirical conver-
gence rates—to the same solution as SGD with full pre-
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Figure 4. Linear models with end-to-end low precision.

cision; and (2) implemented on FPGA, our low-precision
prototype achieves significant speedup because of the de-
crease in bandwidth consumption.

Convergence. Figure 4 illustrates the result of training
linear models: (a) linear regression and (b) least squares
SVMs, with end-to-end low-precision and full precision.
For low precision, we pick the smallest number of bits that
results in a smooth convergence curve. We compare the
final training loss in both settings and the convergence rate.

We see that, for both linear regression and least squares
SVM, using 5- or 6-bit is always enough to converge to
the same solution with comparable convergence rate. This
validates our prediction that double-sampling provides an
unbiased estimator of the gradient. Considering the size of
input samples that we need to read, we could potentially
save 6–8× memory bandwidth compared to using 32-bit.

Speedup. We implemented our low-precision framework
on a state-of-the-art FPGA platform. The detailed imple-
mentation is described in (Kara et al., 2017). This imple-
mentation assumes the input data is already quantized and
stored in memory (data can be quantized during the first
epoch).

Figure 5 illustrates the result of (1) our FPGA implemen-
tation with quantized data, (2) FPGA implementation with
32-bit data, and (3) Hogwild! running with 10 CPU cores.
Observe that all approaches converge to the same solu-
tion. FPGA with quantized data converges 6-7× faster than
FPGA with full precision or Hogwild!. The FPGA imple-
mentation with full precision is memory-bandwidth bound,
and by using our framework on quantized data, we save up
to 8× memory-bandwidth, which explains the speedup.

Impact of Mini-Batching. We now validate
the“sensitivity” of the algorithm to the precision un-
der batching. Equation 7 suggests that, as we increase
batch size, the variance term corresponding to input
quantization may start to dominate the variance of the
stochastic gradient. However, in practice and for reason-
able parameter settings, we found this does not occur:
convergence trends for small batch size, e.g. 1, are the
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same as for larger sizes, e.g. 256. Figure 6 shows that, if
we use larger mini-batch size (256), we need more epochs
than using smaller mini-batch size (16) to converge, but
for the quantized version, actually the one with larger
mini-batch size converges faster.

4.2. Data-Optimal Quantization Strategy

We validate that, with our data-optimal quantization strat-
egy, we can significantly decrease the number of bits that
double-sampling requires to achieve the same convergence.
Figure 7(a) illustrates the result of using 3-bit and 5-bit
for uniform quantization and optimal quantization on the
YearPrediction dataset. Here, we only consider quantiza-
tion on data, but not on gradient or model, because to com-
pute the data-optimal quantization, we need to have access
to all data and assume the data doesn’t change too much,
which is not the case for gradient or model. The quantiza-
tion points are calculated for each feature for both uniform
quantization and optimal quantization. We see that, while
uniform quantization needs 5-bit to converge smoothly, op-
timal quantization only needs 3-bit. We save almost 1.7×
number of bits by just allocating quantization points care-
fully.

Comparision with uniform quantization. We validate
that, with our data-optimal quantization strategy, we can
significantly increase the convergence speed.

Figure 8 illustrates the result of training linear regres-
sion models: with uniform quantization points and opti-
mal quantization points. Here, notice that we only quan-

0

0.6

1.2

1.8

2.4

0 10 20 30 40

32-bit Full Precision

XNOR5 Optimal5

#Epochs

0

30

60

90

120

150

0 6 12 18 24 30

Uniform 3-bit

Tr
ai

ni
ng

 L
os

s

#Epochs

32-bit Full Precision

Optimal 3-bit, Uniform 5-bit 
overlap w/ 32-bit Full Precision

(a) Linear Model (b) Deep Learning

Figure 7. Optimal quantization strategy.

0 25 50 75 100

Optimal 2-bit
Uniform 2-bit

#Epochs

Tr
ai

ni
ng

 L
os

s

#Epochs
(a) synthetic 10 (b) synthetic 100

0 25 50 75 100

0.3

0 0

Optimal 4-bit

Uniform 4-bit

#Epochs
(c) synthetic 1000

0 25 50 75 100
0

Optimal 5-bit

Uniform 5-bit

0 25 50 75 100

Optimal 3-bit

Uniform 3-bit

#Epochs

Tr
ai

ni
ng

 L
os

s

#Epochs
(d) YearPredictionMSD (e) cadata

0 25 50 75 100

75

0

300

2

0

x109

Optimal 2-bit

Uniform 2-bit

#Epochs
(f) cpusmall

0 25 50 75 100

30

0

60

Optimal 2-bit

Uniform 2-bit

0.3 0.3

0.60.60.6

Figure 8. Linear regression with quantized data on multiple
datasets.

tize data, but not gradient or model. We see that, if we
use same number of bits, optimal quantization always con-
verges faster than uniform quantization and the loss curve is
more stable, because the variance induced by quantization
is smaller. As a result, with our data-optimal quantization
strategy, we can either (1) get up to 4× faster convergence
speed with the same number of bits; or (2) save up to 1.7×
bits while getting the same convergence speed.

We also see from Figure 8 (a) to (c) that if the dataset
has more features, usually we need more bits for quantiza-
tion, because the variance induced by quantization is higher
when the dimensionality is higher.

4.3. Extensions to Deep Learning

We validate that our data-optimal quantization strategy
can be used in training deep neural networks. We take
Caffe’s CIFAR-10 tutorial (Caf) and compare three differ-
ent quantization strategies: (1) Full Precision, (2) XNOR5,
a XNOR-Net implementation that, following the multi-bits
strategy in the original paper, quantizes data into five uni-
form levels, and (3) Optimal5, our quantization strategy
with five optimal quantization levels. As shown in Fig-
ure 7(b), Optimal5 converges to a significantly lower train-
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ing loss compared with XNOR5. Also, Optimal5 achieves
>5 points higher testing accuracy over XNOR5. This il-
lustrates the improvement obtainable by training a neural
network with a carefully chosen quantization strategy.

5. Related Work
There has been significant work on “low-precision
SGD” (De Sa et al., 2015; Alistarh et al., 2016). These re-
sults provide theoretical guarantees only for quantized gra-
dients. The model and input samples, on the other hand, are
much more difficult to analyze because of the non-linearity.
We focus on end-to-end quantization, for all components.

Low-Precision Deep Learning. Low-precision training
of deep neural networks has been studied intensively and
many heuristics work well for a subset of networks. OneBit
SGD (Seide et al., 2014) provides a gradient compres-
sion heuristic developed in the context of deep neural net-
works for speech recognition. There are successful appli-
cations of end-to-end quantization to training neural net-
works that result in little to no quality loss (Hubara et al.,
2016; Rastegari et al., 2016; Zhou et al., 2016; Miyashita
et al., 2016; Li et al., 2016; Gupta et al., 2015). They
quantize weights, activations, and gradients to low preci-
sion (e.g., 1-bit) and revise the back-propagation algorithm
to be aware of the quantization function. The empirical
success of these works inspired this paper, in which we try
to provide a theoretical understanding of end-to-end low-
precision training for machine learning models. Another
line of research concerns inference and model compression
of a pre-trained model (Vanhoucke et al., 2011; Gong et al.,
2014; Han et al., 2016; Lin et al., 2016; Kim & Smaragdis,
2016; Kim et al., 2015; Wu et al., 2016). In this paper, we
focus on training and leave the study of inference for future
work.

Low-Precision Linear Models. Quantization is a funda-
mental topic studied by the DSP community, and there has
been research on linear regression models in the presence
of quantization error or other types of noise. For exam-
ple, Gopi et al. (2013) studied compressive sensing with
binary quantized measurement, and a two-stage algorithm
was proposed to recover the sparse high-precision solution
up to a scale factor. Also, the classic errors-in-variable
model (Hall, 2008) could also be relevant if quantization
is treated as a source of “error.” In this paper, we scope
ourselves to the context of stochastic gradient descent, and
our insights go beyond simple linear models. For SVM the
straw man approach can also be seen as a very simple case
of kernel approximation (Cortes et al., 2010).

Other Related Work. Precision of data representation is
a key design decision for configurable hardwares such as

FPGA. There have been attempts to lower the precision
when training on such hardware (Kim et al., 2011). These
results are mostly empirical; we aim at providing a theoret-
ical understanding, which enables new algorithms.

6. Discussion and Future Work
Our motivating question was whether end-to-end low-
precision data representation can enable efficient compu-
tation with convergence guarantees. We show that ZipML,
a relatively simple stochastic quantization framework can
achieve this for linear models. With this setting, as little as
two bits per model dimension are sufficient for good accu-
racy, and can enable a fast FPGA implementation.

Non-Linear Models. We mainly discussed linear mod-
els (e.g. linear regression) in this paper. The natural ques-
tion is that can we extend our ZipML framework to non-
linear models (e.g. logistic regression or SVM) which are
arguably more commonly used. In the full version on this
paper, we examine this problem, and find that our frame-
work can be generalized to non-linear settings, and that in
practice 8-bit is sufficient to achieve good accuracy on a va-
riety of tasks, such as SVM and logistic regression. How-
ever, we notice that a strawman approach, which applies
naive stochastic rounding over the input data to just 8-bit
precision, converges to similar results, without the added
complexity. It is interesting to consider the rationale be-
hind these results. Our framework is based on the idea of
unbiased approximation of the original SGD process. For
linear models, this is easy to achieve. For non-linear mod-
els, this is harder, and we focus on guaranteeing arbitrarily
low bias. However, for a variety of interesting functions
such as hinge loss, guaranteeing low bias requires complex
approximations. In turn, these increase the variance. The
complexity of the approximation and the resulting variance
increase force us to increase the density of the quantization,
in order to achieve good approximation guarantees.

Hardware Selection. We choose to realize our imple-
mentation using FPGA because of its flexibility in deal-
ing with low-precision arithmetic, while CPU or GPU can
only do at least 8-bit computation efficiently. However,
we do observe speed up in other environments – for exam-
ple, the double sampling techniques are currently being ap-
plied to sensor networks with embedded GPUs and CPUs
to achieve similar speedup. We are currently conducting an
architecture exploration study which aims at understanding
the system trade-off between FPGA, CPU, and GPU. This
requires us to push the implementation on all three archi-
tectures to the extreme. We expect this study will soon pro-
vide a full systematic answer to the question that on which
hardware can we get the most from the ZipML framework.
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