212 research outputs found

    PIPE-chipSAD: A Pipeline for the Analysis of High Density Arrays of Bacterial Transcriptomes

    Get PDF
    PIPE-chipSAD is a pipeline for bacterial transcriptome studies based on high-density microarray experiments. The main algorithm chipSAD, integrates the analysis of the hybridization signal with the genomic position of probes and identifies portions of the genome transcribing for mRNAs. The pipeline includes a procedure, align-chipSAD, to build a multiple alignment of transcripts originating in the same locus in multiple experiments and provides a method to compare mRNA expression across different conditions. Finally, the pipeline includes anno-chipSAD a method to annotate the detected transcripts in comparison to the genome annotation. Overall, our pipeline allows transcriptional profile analysis of both coding and non-coding portions of the chromosome in a single framework. Importantly, due to its versatile characteristics, it will be of wide applicability to analyse, not only microarray signals, but also data from other high throughput technologies such as RNA-sequencing. The current PIPE-chipSAD implementation is written in Python programming language and is freely available at https://github.com/silviamicroarray/chipSAD

    Diversity of greek meningococcal serogroup B isolates and estimated coverage of the 4CMenB meningococcal vaccine

    Get PDF
    International audienceBACKGROUND: Serogroup B meningococcal (MenB) isolates currently account for approximately 90% of invasive meningococcal disease (IMD) in Greece with ST-162 clonal complex predominating. The potential of a multicomponent meningococcal B vaccine (4CMenB) recently licensed in Europe was investigated in order to find whether the aforementioned vaccine will cover the MenB strains circulating in Greece. A panel of 148 serogroup B invasive meningococcal strains was characterized by multilocus sequence typing (MLST) and PorA subtyping. Vaccine components were typed by sequencing for factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA) and Neisseria adhesin A (NadA). Their expression was explored by Meningococcal Antigen Typing System (MATS). RESULTS: Global strain coverage predicted by MATS was 89.2% (95% CI 63.5%-98.6%) with 44.6%, 38.5% and 6.1% of strains covered by one, two and three vaccine antigens respectively. NHBA was the antigen responsible for the highest coverage (78.4%), followed by fHbp (52.7%), PorA (8.1%) and NadA (0.7%). The coverage of the major genotypes did not differ significantly. The most prevalent MLST genotype was the ST-162 clonal complex , accounting for 44.6% of the strains in the panel and with a predicted coverage of 86.4%, mainly due to NHBA and fHbp. CONCLUSIONS: 4CMenB has the potential to protect against a significant proportion of Greek invasive MenB strains

    Molecular variability of Meningococcal antigens in carriage and disease strains and in other Neisseria species

    Get PDF
    This PhD thesis is focused on the study of the molecular variability of some specific proteins, part of the outer membrane of the pathogen Neisseria meningitidis, and described as protective antigens and important virulence factors. These antigens have been employed as components of the vaccine developed by Novartis Vaccines against N. meningitidis of serogroup B, and their variability in the meningococcal population is a key aspect when the effect of the vaccine is evaluated. The PhD project has led to complete three major studies described in three different manuscritps, of which two have been published and the third is in preparation. The thesis is structured in three main chapters, each of them dedicated to the three studies. The first, described in Chapter 1, is specifically dedicated to the analysis of the molecular conservation of meningococcal antigens in the genomes of all species classified in the genus Neisseria (Conservation of Meningococcal Antigens in the Genus Neisseria. A. Muzzi et al.. 2013. mBio 4 (3)). The second study, described in Chapter 2, focuses on the analysis of the presence and conservation of the antigens in a panel of bacterial isolates obtained from cases of the disease and from healthy individuals, and collected in the same year and in the same geographical area (Conservation of fHbp, NadA, and NHBA in carrier and pathogenic isolates of Neisseria meningitidis collected in the Czech Republic in 1993. A. Muzzi et al.. Manuscript in preparation). Finally, Chapter 3 describes the molecular features of the antigens in a panel of bacterial isolates collected over a period of 50 years, and representatives of the epidemiological history of meningococcal disease in the Netherlands (An Analysis of the Sequence Variability of Meningococcal fHbp, NadA and NHBA over a 50-Year Period in the Netherlands. S. Bambini et al.. 2013. PloS one e65043)

    Botanical memory: five centuries of floristic changes revealed by a Renaissance herbarium (Ulisse Aldrovandi, 1551-1586)

    Get PDF
    We analysed the spatially explicit floristic information available in the herbarium of Ulisse Aldrovandi (1551-1586) to track floristic changes in the surroundings of Bologna across five centuries. Aldrovandi's data were compared with the Flora della Provincia di Bologna by Girolamo Cocconi (1883) and the Floristic Database of Emilia-Romagna (1965-2021). We explored potential variations in native range and life forms composition, and habitat affinity of the species in the three floras, also contrasting between native and alien species. Native species, mainly in terms of variations of hydro-hygrophytes, chamaephytes and therophytes, provide clear signals of human disturbance and habitat loss. Signals of climate change are provided by the high-mountain species, that were comparably rare between Aldrovandi and current flora and more represented in Cocconi, probably reflecting the effect of the Little Ice Age. Our findings also indicate the increasing importance of alien species from the Renaissance onwards. In this perspective, Aldrovandi's herbarium preserves the memory of the first signs of a radical transformation of the European flora and habitats. Finally, the study warns about the risk of dismissing herbaria and herbarium specimens collection, which would cause irreparable lacunas in our botanical memory, hindering our ability to predict biodiversity trajectories

    Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs:A Valid Platform for Functional Tests

    Get PDF
    : With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing

    Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk

    Get PDF
    ABSTRACT The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies. IMPORTANCE Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease

    The WEST Study: A Retrospective and Multicentric Study on the Impact of Steroid Therapy in West Nile Encephalitis

    Get PDF
    Background: The use of steroid therapy in potentially life-threatening neuroinvasive forms of West Nile infection (WNND) is controversial. The aim of this study is to assess the efficacy of steroid therapy in reducing intrahospital mortality, length of stay, and neurological sequelae at discharge. Methods: This was a multicenter, retrospective, observational study conducted in 5 hospitals in Northern Italy, headed by the Fondazione IRCSS Policlinico San Matteo (Pavia). We extracted all patient data with WNND diagnoses, comparing patients who received steroid treatment with patients who did not receive steroid treatment between January 2014 and January 2022. Comparisons between the 2 groups were performed using chi-square tests for categorical variables and Mann-Whitney tests for non-normal continuous data, and a generalized linear model for the binomial family was carried out. Results: Data from 65 WNND patients were extracted. Among these patients, 33 (50.7%) received steroid therapy at any point during their hospitalization. Receiving steroid therapy did not significantly reduce intrahospital mortality (odds ratio [OR], 1.70; 95% CI, 0.3-13.8; P = .89) or neurological sequelae at discharge (OR, 0.53; 95% CI, 0.16-1.76; P = .47). Conclusions: Steroid treatment is currently used on a single-case basis in severe WNND. More prospective data are needed to demonstrate a protective effect on mortality and neurological sequelae

    Adaptive Response of Group B Streptococcus to High Glucose Conditions: New Insights on the CovRS Regulation Network

    Get PDF
    Although the contribution of carbohydrate catabolism to bacterial colonization and infection is well recognized, the transcriptional changes during these processes are still unknown. In this study, we have performed comparative global gene expression analysis of GBS in sugar-free versus high glucose milieu. The analysis revealed a differential expression of genes involved in metabolism, transport and host-pathogen interaction. Many of them appeared to be among the genes previously reported to be controlled by the CovRS two-component system. Indeed, the transcription profile of a Delta covRS strain grown in high-glucose conditions was profoundly affected. In particular, of the total genes described to be regulated by glucose, similar to 27% were under CovRS control with a functional role in protein synthesis, transport, energy metabolism and regulation. Among the CovRS dependent genes, we found bibA, a recently characterized adhesin involved in bacterial serum resistance and here reported to be down-regulated by glucose. ChIP analysis revealed that in the presence of glucose, CovR binds bibA promoter in vivo, suggesting that CovR may act as a negative regulator or a repressor. We also demonstrated that, as for other target promoters, chemical phosphorylation of CovR in aspartic acid increases its affinity for the bibA promoter region. The data reported in this study contribute to the understanding of the molecular mechanisms modulating the adaptation of GBS to glucose

    The Streptococcus pneumoniae Pilus-1 Displays a Biphasic Expression Pattern

    Get PDF
    The Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1), which has three clonal variants (clade I, II and III) and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of infection. Several reports suggest that pilus-1 expression is tightly regulated and involves the interplay of numerous genetic regulators, including the PI-1 positive regulator RlrA. In this report we provide evidence that pilus expression, when analyzed at the single-cell level in PI-1 positive strains, is biphasic. In fact, the strains present two phenotypically different sub-populations of bacteria, one that expresses the pilus, while the other does not. The proportions of these two phenotypes are variable among the strains tested and are not influenced by genotype, serotype, growth conditions, colony morphology or by the presence of antibodies directed toward the pilus components. Two sub-populations, enriched in pilus expressing or not expressing bacteria were obtained by means of colony selection and immuno-detection methods for five strains. PI-1 sequencing in the two sub-populations revealed the absence of mutations, thus indicating that the biphasic expression observed is not due to a genetic modification within PI-1. Microarray expression profile and western blot analyses on whole bacterial lysates performed comparing the two enriched sub-populations, revealed that pilus expression is regulated at the transcriptional level (on/off regulation), and that there are no other genes, in addition to those encoded by PI-1, concurrently regulated across the strains tested. Finally, we provide evidence that the over-expression of the RrlA positive regulator is sufficient to induce pilus expression in pilus-1 negative bacteria. Overall, the data presented here suggest that the observed biphasic pilus expression phenotype could be an example of bistability in pneumococcus

    The global meningitis genome partnership.

    Get PDF
    Genomic surveillance of bacterial meningitis pathogens is essential for effective disease control globally, enabling identification of emerging and expanding strains and consequent public health interventions. While there has been a rise in the use of whole genome sequencing, this has been driven predominately by a subset of countries with adequate capacity and resources. Global capacity to participate in surveillance needs to be expanded, particularly in low and middle-income countries with high disease burdens. In light of this, the WHO-led collaboration, Defeating Meningitis by 2030 Global Roadmap, has called for the establishment of a Global Meningitis Genome Partnership that links resources for: N. meningitidis (Nm), S. pneumoniae (Sp), H. influenzae (Hi) and S. agalactiae (Sa) to improve worldwide co-ordination of strain identification and tracking. Existing platforms containing relevant genomes include: PubMLST: Nm (31,622), Sp (15,132), Hi (1935), Sa (9026); The Wellcome Sanger Institute: Nm (13,711), Sp (> 24,000), Sa (6200), Hi (1738); and BMGAP: Nm (8785), Hi (2030). A steering group is being established to coordinate the initiative and encourage high-quality data curation. Next steps include: developing guidelines on open-access sharing of genomic data; defining a core set of metadata; and facilitating development of user-friendly interfaces that represent publicly available data
    corecore