5 research outputs found

    Boron doped graphene based linear dynamic range photodiode

    No full text
    The boron-doped graphene oxide film was prepared using drop casting/coating technique. The film was coated by hydrothermal method on p-Si substrate and thus Al/p-Si/B-doped GO/Au diode was fabricated. The structural properties of the film was investigated by SEM and EDS techniques. The optoelectronic behavior of the diode was analyzed under various solar light and frequencies. The diode indicates that the forward current is higher that of reverse current with a rectification ratio (RR = I-F/I-R) of 7.30 x 10(4) at dark and +/- 5 V. The diode electronic parameters of the diode were computed from electrical characteristics. An increase in the photocurrent of the diode with solar light intensity indicates the presence of a photoconduction mechanism. The photoconductive and photovoltaic response of the diode were analyzed using photocurrent measurements. The interface state density (N-ss) of the diode was analyzed from conductance technique. The optoelectrical results of the studied device suggest that the diode can be used in optic communications.Scientific Project Unit of Kirklareli University [Klubap 76, Klubap 113]; International Scientific Partnership Program ISPP at King Saud University [0046]This study was supported by Scientific Project Unit of Kirklareli University under project number: Klubap 113. This study was supported by Scientific Project Unit of Kirklareli University under project number: Klubap 76. The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0046.WOS:0004496211000142-s2.0-8504813680

    Controlling Geminiviruses before Transmission: Prospects

    No full text
    Whitefly (Bemisia tabaci)-transmitted Geminiviruses cause serious diseases of crop plants in tropical and sub-tropical regions. Plants, animals, and their microbial symbionts have evolved complex ways to interact with each other that impact their life cycles. Blocking virus transmission by altering the biology of vector species, such as the whitefly, can be a potential approach to manage these devastating diseases. Virus transmission by insect vectors to plant hosts often involves bacterial endosymbionts. Molecular chaperonins of bacterial endosymbionts bind with virus particles and have a key role in the transmission of Geminiviruses. Hence, devising new approaches to obstruct virus transmission by manipulating bacterial endosymbionts before infection opens new avenues for viral disease control. The exploitation of bacterial endosymbiont within the insect vector would disrupt interactions among viruses, insects, and their bacterial endosymbionts. The study of this cooperating web could potentially decrease virus transmission and possibly represent an effective solution to control viral diseases in crop plants

    Erratum: International Nosocomial Infection Control Consortium report, data summary of 43 countries for 2007-2012. Device-associated module (American Journal of Infection Control (2014) 42 (942-956))

    No full text
    corecore