59 research outputs found

    Genetic evidence for the most common risk factors for chronic axonal polyneuropathy in the general population

    Get PDF
    BACKGROUND AND PURPOSE: Chronic axonal polyneuropathy is a common disease, but the etiology remains only partially understood. Previous etiologic studies have identified clinical risk factors, but genetic evidence supporting causality between these factors and polyneuropathy are largely lacking. In this study, we investigate whether there is a genetic association of clinically established important risk factors (diabetes, body mass index [BMI], vitamin B12 levels, and alcohol intake) with chronic axonal polyneuropathy. METHODS: This study was performed within the population‐based Rotterdam Study and included 1565 participants (median age = 73.6 years, interquartile range = 64.6–78.8, 53.5% female), of whom 215 participants (13.7%) had polyneuropathy. Polygenic scores (PGSs) for diabetes, BMI, vitamin B12 levels, and alcohol intake were calculated at multiple significance thresholds based on published genome‐wide association studies. RESULTS: Higher PGSs of diabetes, BMI, and alcohol intake were associated with higher prevalence of chronic axonal polyneuropathy, whereas higher PGS of vitamin B12 levels was associated with lower prevalence of polyneuropathy. These effects were most pronounced for PGSs with lenient significance thresholds for diabetes and BMI (odds ratio [OR](diabetes, p < 1.0) = 1.21, 95% confidence interval [CI] = 1.05–1.39 and OR(BMI, p < 1.0) = 1.21, 95% CI = 1.04–1.41) and for the strictest significance thresholds for vitamin B12 level and alcohol intake (OR (vitamin B12, p < 5e‐6) = 0.79, 95% CI = 0.68–0.92 and OR(alcohol, p < 5e‐8) = 1.17, 95% CI = 1.02–1.35). We did not find an association between different PGSs and sural sensory nerve action potential amplitude, nor between individual lead variants of PGS (p ) (< 5e‐8) and polyneuropathy. CONCLUSIONS: This study provides evidence for polygenic associations of diabetes, BMI, vitamin B12 level, and alcohol intake with chronic axonal polyneuropathy. This supports the hypothesis of causal associations between well‐known clinical risk factors and polyneuropathy

    Polygenic Multiple Sclerosis Risk and Population-Based Childhood Brain Imaging

    Get PDF
    Objective: Multiple sclerosis (MS) is a neurological disease with a substantial genetic component and immune-mediated neurodegeneration. Patients with MS show structural brain differences relative to individuals without MS, including smaller regional volumes and alterations in white matter (WM) microstructure. Whether genetic risk for MS is associated with brain structure during early neurodevelopment remains unclear. In this study, we explore the association between MS polygenic risk scores (PRS) and brain imaging outcomes from a large, population-based pediatric sample to gain insight into the underlying neurobiology of MS. Methods: We included 8- to 12-year-old genotyped participants from the Generation R Study in whom T1-weighted volumetric (n = 1,136) and/or diffusion tensor imaging (n = 1,088) had been collected. PRS for MS were calculated based on a large genome-wide association study of MS (n = 41,505) and were regressed on regional volumes, global and tract-specific fractional anisotropy (FA), and global mean diffusivity using linear regression. Results: No associations were observed for the regional volumes. We observed a positive association between the MS PRS and global FA (ÎČ = 0.098, standard error [SE] = 0.030, p = 1.08 × 10−3). Tract-specific analyses showed higher FA and lower radial diffusivity in several tracts. We replicated our findings in an independent sample of children (n = 186) who were scanned in an earlier phase (global FA; ÎČ = 0.189, SE = 0.072, p = 9.40 × 10−3). Interpretation: This is the first study to show that greater genetic predisposition for MS is associated with higher global brain WM FA at an early age in the general population. Our results suggest a preadolescent time window within neurodevelopment in which MS risk variants act upon the brain. ANN NEUROL 2020

    Migraine Genetic Variants Influence Cerebral Blood Flow

    Get PDF
    Objective: To investigate the association of migraine genetic variants with cerebral blood flow (CBF). Background: Migraine is a common disorder with many genetic and non-genetic factors affecting its occurrence. The exact pathophysiological mechanisms underlying the disease remain unclear, but are known to involve hemodynamic and vascular disruptions. Recent genome-wide association studies have identified 44 genetic variants in 38 genetic loci that affect the risk of migraine, which provide the opportunity to further disentangle these mechanisms. Methods: We included 4665 participants of the population-based Rotterdam Study (mean age 65.0 ± 10.9 years, 55.6% women). Cross-sectional area (mm2), flow velocity (mm/s), and blood flow (mL/min) were measured in both carotids and the basilar artery using 2-dimensional phase-contrast magnetic resonance imaging. We analyzed 43 previously identified migraine variants separately and calculated a genetic risk score (GRS). To assess the association with CBF, we used linear regression models adjusted for age, sex, and total brain volume. Hierarchical clustering was performed based on the associations with CBF measures and tissue enrichment. Results: The rs67338227 risk allele was associated with higher flow velocity and smaller cross-sectional area in the carotids (Pminimum = 3.7 × 10−8). Other variants were related to CBF with opposite directions of effect, but not significantly after multiple testing adjustments (P < 1.4 × 10−4). The migraine GRS was not associated with CBF after multiple testing corrections. Migraine risk variants were found to be enriched for flow in the basilar artery (λ = 2.39). Conclusions: These findings show that genetic migraine risk is complexly associated with alterations in cerebral hemodynamics

    A priori collaboration in population imaging: The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement consortium

    Get PDF
    AbstractIntroductionVirchow-Robin spaces (VRS), or perivascular spaces, are compartments of interstitial fluid enclosing cerebral blood vessels and are potential imaging markers of various underlying brain pathologies. Despite a growing interest in the study of enlarged VRS, the heterogeneity in rating and quantification methods combined with small sample sizes have so far hampered advancement in the field.MethodsThe Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement (UNIVRSE) consortium was established with primary aims to harmonize rating and analysis (www.uconsortium.org). The UNIVRSE consortium brings together 13 (sub)cohorts from five countries, totaling 16,000 subjects and over 25,000 scans. Eight different magnetic resonance imaging protocols were used in the consortium.ResultsVRS rating was harmonized using a validated protocol that was developed by the two founding members, with high reliability independent of scanner type, rater experience, or concomitant brain pathology. Initial analyses revealed risk factors for enlarged VRS including increased age, sex, high blood pressure, brain infarcts, and white matter lesions, but this varied by brain region.DiscussionEarly collaborative efforts between cohort studies with respect to data harmonization and joint analyses can advance the field of population (neuro)imaging. The UNIVRSE consortium will focus efforts on other potential correlates of enlarged VRS, including genetics, cognition, stroke, and dementia

    Genetic risk of neurodegenerative diseases is associated with mild cognitive impairment and conversion to dementia

    Get PDF
    Introduction Neurodegenerative diseases are a major cause of cognitive impairment and can ultimately lead to dementia. Genome-wide association studies have uncovered many genetic variants conferring risk of neurodegenerative diseases, but their role in cognitive impairment remains unexplored. Methods In the prospective, population-based Rotterdam Study, 3605 nondemented persons aged ≄55 years were genotyped, screened for mild cognitive impairment (MCI) in 2002 to 2005 and underwent continuous follow-up for dementia until 2012. Weighted polygenic risk scores of genetic variants for Alzheimer's disease (AD), Parkinson's disease (PD), and the frontotemporal lobar degeneration/amyotrophic lateral sclerosis disease spectrum (FTLD/ALS) were constructed and investigated for association with MCI and the subsequent conversion to dementia. Results In total, 360 (10.0%) persons had MCI, of whom 147 (4.1%) were amnestic and 213 (5.9%) nonamnestic. The AD risk score was associated with both MCI subtypes (odds ratio for all MCI 1.15 [95% CI, 1.03-1.28]), whereas PD and FTLD/ALS risk scores were associated only with nonamnestic MCI (odds ratios 1.15 [1.00-1.32] and 1.19 [1.03-1.37], respectively). The AD risk score, but not PD and FTLD/ALS risk scores, was associated with an increased risk of dementia (hazard ratio 1.55 [1.37-1.77]). Discussion Genetic evidence supports the view that multiple neurodegenerative pathways lead to MCI and that the subsequent conversion to dementia, primarily of the AD subtype, is mainly due to the AD pathway(s)

    Genetic Risk Score for Intracranial Aneurysms:Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity

    Get PDF
    BACKGROUND: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. METHODS: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. RESULTS: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (ÎČ=-4.82×10(-3) per year [95% CI, -6.49×10(-3) to -3.14×10(-3)]; P=1.82×10(-8)), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). CONCLUSIONS: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH

    Migraine, inflammatory bowel disease and celiac disease:A Mendelian randomization study

    Get PDF
    Objective: To assess whether migraine may be genetically and/or causally associated with inflammatory bowel disease (IBD) or celiac disease. Background: Migraine has been linked to IBD and celiac disease in observational studies, but whether this link may be explained by a shared genetic basis or could be causal has not been established. The presence of a causal association could be clinically relevant, as treating one of these medical conditions might mitigate the symptoms of a causally linked condition. Methods:Linkage disequilibrium score regression and two-sample bidirectional Mendelian randomization analyses were performed using summary statistics from cohort-based genome-wide association studies of migraine (59,674 cases; 316,078 controls), IBD (25,042 cases; 34,915 controls) and celiac disease (11,812 or 4533 cases; 11,837 or 10,750 controls). Migraine with and without aura were analyzed separately, as were the two IBD subtypes Crohn's disease and ulcerative colitis. Positive control analyses and conventional Mendelian randomization sensitivity analyses were performed.Results: Migraine was not genetically correlated with IBD or celiac disease. No evidence was observed for IBD (odds ratio [OR] 1.00, 95% confidence interval [CI] 0.99–1.02, p = 0.703) or celiac disease (OR 1.00, 95% CI 0.99–1.02, p = 0.912) causing migraine or migraine causing either IBD (OR 1.08, 95% CI 0.96–1.22, p = 0.181) or celiac disease (OR 1.08, 95% CI 0.79–1.48, p = 0.614) when all participants with migraine were analyzed jointly. There was some indication of a causal association between celiac disease and migraine with aura (OR 1.04, 95% CI 1.00–1.08, p = 0.045), between celiac disease and migraine without aura (OR 0.95, 95% CI 0.92–0.99, p = 0.006), as well as between migraine without aura and ulcerative colitis (OR 1.15, 95% CI 1.02–1.29, p = 0.025). However, the results were not significant after multiple testing correction. Conclusions: We found no evidence of a shared genetic basis or of a causal association between migraine and either IBD or celiac disease, although we obtained some indications of causal associations with migraine subtypes.</p

    Genetic variants for head size share genes and pathways with cancer

    Get PDF
    The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.</p
    • 

    corecore