19 research outputs found

    Résolution de problèmes inverses en géodésie physique

    Get PDF
    Ce travail traite de deux problèmes de grande importances en géodésie physique. Le premier porte sur la détermination du géoïde sur une zone terrestre donnée. Si la terre était une sphère homogène, la gravitation en un point, serait entièrement déterminée à partir de sa distance au centre de la terre, ou de manière équivalente, en fonction de son altitude. Comme la terre n'est ni sphérique ni homogène, il faut calculer en tout point la gravitation. A partir d'un ellipsoïde de référence, on cherche la correction à apporter à une première approximation du champ de gravitation afin d'obtenir un géoïde, c'est-à-dire une surface sur laquelle la gravitation est constante. En fait, la méthode utilisée est la méthode de collocation par moindres carrés qui sert à résoudre des grands problèmes aux moindres carrés généralisés. Le seconde partie de cette thèse concerne un problème inverse géodésique qui consiste à trouver une répartition de masses ponctuelles (caractérisées par leurs intensités et positions), de sorte que le potentiel généré par eux, se rapproche au maximum d'un potentiel donné. Sur la terre entière une fonction potentielle est généralement exprimée en termes d'harmoniques sphériques qui sont des fonctions de base à support global la sphère. L'identification du potentiel cherché se fait en résolvant un problème aux moindres carrés. Lorsque seulement une zone limitée de la Terre est étudiée, l'estimation des paramètres des points masses à l'aide des harmoniques sphériques est sujette à l'erreur, car ces fonctions de base ne sont plus orthogonales sur un domaine partiel de la sphère. Le problème de la détermination des points masses sur une zone limitée est traitée par la construction d'une base de Slepian qui est orthogonale sur le domaine limité spécifié de la sphère. Nous proposons un algorithme itératif pour la résolution numérique du problème local de détermination des masses ponctuelles et nous donnons quelques résultats sur la robustesse de ce processus de reconstruction. Nous étudions également la stabilité de ce problème relativement au bruit ajouté. Nous présentons quelques résultats numériques ainsi que leurs interprétations.This work focuses on the study of two well-known problems in physical geodesy. The first problem concerns the determination of the geoid on a given area on the earth. If the Earth were a homogeneous sphere, the gravity at a point would be entirely determined from its distance to the center of the earth or in terms of its altitude. As the earth is neither spherical nor homogeneous, we must calculate gravity at any point. From a reference ellipsoid, we search to find the correction to a mathematical approximation of the gravitational field in order to obtain a geoid, i.e. A surface on which gravitational potential is constant. The method used is the method of least squares collocation which is the best for solving large generalized least squares problems. In the second problem, We are interested in a geodetic inverse problem that consists in finding a distribution of point masses (characterized by their intensities and positions), such that the potential generated by them best approximates a given potential field. On the whole Earth a potential function is usually expressed in terms of spherical harmonics which are basis functions with global support. The identification of the two potentials is done by solving a least-squares problem. When only a limited area of the Earth is studied, the estimation of the point-mass parameters by means of spherical harmonics is prone to error, since they are no longer orthogonal over a partial domain of the sphere. The point-mass determination problem on a limited region is treated by the construction of a Slepian basis that is orthogonal over the specified limited domain of the sphere. We propose an iterative algorithm for the numerical solution of the local point mass determination problem and give some results on the robustness of this reconstruction process. We also study the stability of this problem against added noise. Some numerical tests are presented and commented.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    CFD/CSD Coupling for an Isolated Rotor Using preCICE

    Get PDF
    Modeling a rotor blade flow field involves computing the blade motion, elastic deformation, and the three-dimensional forces and moments for specific trim conditions. Such a complex multiphysics problem, which includes a strong fluid-structure interaction, should be modeled by coupling separate solvers which are specialized on solving single-physics problems. In this work, we present a modular and extensible TAU-CAMRAD II coupling environment using the preCICE coupling library [1]. In this coupling, the aerodynamic forces and moments were computed with the CFD solver TAU. The blade control angle for the CFD simulation were determined by the CSD solver CAMRAD II. We validated the implementation using a modified model of the HART-II rotor at an advancing ratio of µ=0.3. Besides the potential that this work unlocks for future simulations of an active rotor, it also serves as an example of using preCICE for geometric multi-scale (1D-3D) coupling of closed-source solvers for periodic phenomena

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    On solving some inverse problems in physical geodesy

    No full text
    Ce travail traite de deux problèmes de grande importances en géodésie physique. Le premier porte sur la détermination du géoïde sur une zone terrestre donnée. Si la terre était une sphère homogène, la gravitation en un point, serait entièrement déterminée à partir de sa distance au centre de la terre, ou de manière équivalente, en fonction de son altitude. Comme la terre n'est ni sphérique ni homogène, il faut calculer en tout point la gravitation. A partir d'un ellipsoïde de référence, on cherche la correction à apporter à une première approximation du champ de gravitation afin d'obtenir un géoïde, c'est-à-dire une surface sur laquelle la gravitation est constante. En fait, la méthode utilisée est la méthode de collocation par moindres carrés qui sert à résoudre des grands problèmes aux moindres carrés généralisés. Le seconde partie de cette thèse concerne un problème inverse géodésique qui consiste à trouver une répartition de masses ponctuelles (caractérisées par leurs intensités et positions), de sorte que le potentiel généré par eux, se rapproche au maximum d'un potentiel donné. Sur la terre entière une fonction potentielle est généralement exprimée en termes d'harmoniques sphériques qui sont des fonctions de base à support global la sphère. L'identification du potentiel cherché se fait en résolvant un problème aux moindres carrés. Lorsque seulement une zone limitée de la Terre est étudiée, l'estimation des paramètres des points masses à l'aide des harmoniques sphériques est sujette à l'erreur, car ces fonctions de base ne sont plus orthogonales sur un domaine partiel de la sphère. Le problème de la détermination des points masses sur une zone limitée est traitée par la construction d'une base de Slepian qui est orthogonale sur le domaine limité spécifié de la sphère. Nous proposons un algorithme itératif pour la résolution numérique du problème local de détermination des masses ponctuelles et nous donnons quelques résultats sur la robustesse de ce processus de reconstruction. Nous étudions également la stabilité de ce problème relativement au bruit ajouté. Nous présentons quelques résultats numériques ainsi que leurs interprétations.This work focuses on the study of two well-known problems in physical geodesy. The first problem concerns the determination of the geoid on a given area on the earth. If the Earth were a homogeneous sphere, the gravity at a point would be entirely determined from its distance to the center of the earth or in terms of its altitude. As the earth is neither spherical nor homogeneous, we must calculate gravity at any point. From a reference ellipsoid, we search to find the correction to a mathematical approximation of the gravitational field in order to obtain a geoid, i.e. A surface on which gravitational potential is constant. The method used is the method of least squares collocation which is the best for solving large generalized least squares problems. In the second problem, We are interested in a geodetic inverse problem that consists in finding a distribution of point masses (characterized by their intensities and positions), such that the potential generated by them best approximates a given potential field. On the whole Earth a potential function is usually expressed in terms of spherical harmonics which are basis functions with global support. The identification of the two potentials is done by solving a least-squares problem. When only a limited area of the Earth is studied, the estimation of the point-mass parameters by means of spherical harmonics is prone to error, since they are no longer orthogonal over a partial domain of the sphere. The point-mass determination problem on a limited region is treated by the construction of a Slepian basis that is orthogonal over the specified limited domain of the sphere. We propose an iterative algorithm for the numerical solution of the local point mass determination problem and give some results on the robustness of this reconstruction process. We also study the stability of this problem against added noise. Some numerical tests are presented and commented

    Résolution de problèmes inverses en géodésie physique

    No full text
    This work focuses on the study of two well-known problems in physical geodesy. The first problem concerns the determination of the geoid on a given area on the earth. If the Earth were a homogeneous sphere, the gravity at a point would be entirely determined from its distance to the center of the earth or in terms of its altitude. As the earth is neither spherical nor homogeneous, we must calculate gravity at any point. From a reference ellipsoid, we search to find the correction to a mathematical approximation of the gravitational field in order to obtain a geoid, i.e. A surface on which gravitational potential is constant. The method used is the method of least squares collocation which is the best for solving large generalized least squares problems. In the second problem, We are interested in a geodetic inverse problem that consists in finding a distribution of point masses (characterized by their intensities and positions), such that the potential generated by them best approximates a given potential field. On the whole Earth a potential function is usually expressed in terms of spherical harmonics which are basis functions with global support. The identification of the two potentials is done by solving a least-squares problem. When only a limited area of the Earth is studied, the estimation of the point-mass parameters by means of spherical harmonics is prone to error, since they are no longer orthogonal over a partial domain of the sphere. The point-mass determination problem on a limited region is treated by the construction of a Slepian basis that is orthogonal over the specified limited domain of the sphere. We propose an iterative algorithm for the numerical solution of the local point mass determination problem and give some results on the robustness of this reconstruction process. We also study the stability of this problem against added noise. Some numerical tests are presented and commented.Ce travail traite de deux problèmes de grande importances en géodésie physique. Le premier porte sur la détermination du géoïde sur une zone terrestre donnée. Si la terre était une sphère homogène, la gravitation en un point, serait entièrement déterminée à partir de sa distance au centre de la terre, ou de manière équivalente, en fonction de son altitude. Comme la terre n'est ni sphérique ni homogène, il faut calculer en tout point la gravitation. A partir d'un ellipsoïde de référence, on cherche la correction à apporter à une première approximation du champ de gravitation afin d'obtenir un géoïde, c'est-à-dire une surface sur laquelle la gravitation est constante. En fait, la méthode utilisée est la méthode de collocation par moindres carrés qui sert à résoudre des grands problèmes aux moindres carrés généralisés. Le seconde partie de cette thèse concerne un problème inverse géodésique qui consiste à trouver une répartition de masses ponctuelles (caractérisées par leurs intensités et positions), de sorte que le potentiel généré par eux, se rapproche au maximum d'un potentiel donné. Sur la terre entière une fonction potentielle est généralement exprimée en termes d'harmoniques sphériques qui sont des fonctions de base à support global la sphère. L'identification du potentiel cherché se fait en résolvant un problème aux moindres carrés. Lorsque seulement une zone limitée de la Terre est étudiée, l'estimation des paramètres des points masses à l'aide des harmoniques sphériques est sujette à l'erreur, car ces fonctions de base ne sont plus orthogonales sur un domaine partiel de la sphère. Le problème de la détermination des points masses sur une zone limitée est traitée par la construction d'une base de Slepian qui est orthogonale sur le domaine limité spécifié de la sphère. Nous proposons un algorithme itératif pour la résolution numérique du problème local de détermination des masses ponctuelles et nous donnons quelques résultats sur la robustesse de ce processus de reconstruction. Nous étudions également la stabilité de ce problème relativement au bruit ajouté. Nous présentons quelques résultats numériques ainsi que leurs interprétations

    A Slepian framework for the inverse problem of equivalent gravitational potential generated by discrete point masses

    No full text
    International audienceWe solve a geodetic inverse problem for the determination of a distribution of point masses (characterized by their intensities and positions), such that the potential generated by them best approximates a given potential field. On the whole Earth a potential function is usually expressed in terms of spherical harmonics which are basis functions with global support. The identification of the two potentials is done by solving a least-squares problem. When only a limited area of the Earth is studied, the estimation of the point-mass parameters by means of spherical harmonics is prone to error, since they are no longer orthogonal over a partial domain of the sphere. The point-mass determination problem on a limited region is treated by the construction of a local spherical harmonic basis that is orthogonal over the specified limited domain of the sphere. We propose an iterative algorithm for the numerical solution of the local point mass determination problem and give some results on the robustness of this reconstruction process. We also study the stability of this problem against added noise. Some numerical tests are presented and commented
    corecore