2,890 research outputs found

    Finite-Element Analysis of Shear-off Failure of Keyed Dry Joints in Precast Concrete Segmental Bridges

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.The structural behaviour of precast concrete segmental bridges is largely dependent on the behaviour of the joints between segments. The current practice is to use small keys that are usually unreinforced, distributed over the height of the web and the flange of concrete segments and these keys are normally dry. In this study, a numerical analysis model was established based on ABAQUS finite element code to investigate structural behaviour of keyed dry joints under direct shear. The concrete damage plasticity model along with the pseudo-damping scheme were incorporated to analyse the system for microcracks and to stabilize the solution, respectively. The numerical model is calibrated by full-scale experimental results published elsewhere. It was found that the predicted ultimate load, cracking evolution history, and final crack pattern agree reasonably well with experiment results. The validated numerical model was then employed for parametric study on factors affecting shear behaviour of keyed dry joints, in this case confining pressure. It has been found that shear capacity predicted by AASHTO diverges from that predicted by numerical analysis at high confining pressure because the contribution of friction in the total shear capacity reduces with the increase in confining pressure. Hence, it is recommended to reduce the friction coefficient used in AASHTO code when high confining pressure is applied. Moreover, the propagation of inclined crack is arrested at high confining pressure due to the fact that the fracture propagation direction is governed by the criterion of the maximum energy release rate

    Derivation of normalized pressure impulse curves for flexural ultra high performance concrete slabs

    Get PDF
    In previous studies, a finite-difference procedure was developed to analyze the dynamic response of simply supported normal reinforced concrete (NRC) slabs under blast loads. Ultra high performance concrete (UHPC) is a relatively new material with high strength and high deformation capacity in comparison with conventional normal strength concrete. Therefore, the finite-difference procedure for analysis of conventional reinforced concrete members against blast loads needs to be significantly adapted and extended to accommodate UHPC. In this paper, an advanced moment-rotation analysis model, employed to simulate the behavior of the plastic hinge of an UHPC member, is incorporated into the finite-difference procedure for the dynamic response analysis of reinforced UHPC slabs under blast loads. The accuracy of the finite-difference analysis model that utilized the moment-rotation analysis technique was validated using results from blast tests conducted on UHPC slabs. The validated finite-difference model was then used to generate pressure impulse (PI) curves. Parametric studies were then conducted to investigate the effects of various sectional and member properties on PI curves. Based on the simulated results, two equations were derived that can be used to normalize a PI curve. Further numerical testing of the normalization equations for UHPC members was then undertaken. The generated normalized PI curve, accompanied by the derived normalization equations, can be used for the purposes of general UHPC blast design.Jonathon Dragos; Chengqing Wu; Matthew Haskett; and Deric Oehler

    A study of two stochastic search methods for structural control

    Get PDF
    Abstract: Many engineering tasks involve the search for good solutions among many possibilities. In most cases, tasks are too complex to be modeled completely and their solution spaces often contain local minima. Therefore, classical optimization techniques cannot, in general, be applied effectively. This paper studies two stochastic search methods, one well-established �simulated annealing � and one recently developed �probabilistic global search Lausanne�, applied to structural shape control. Search results are applied to control the quasistatic displacement of a tensegrity structure with multiple objectives and interdependent actuator effects. The best method depends on the accuracy related to requirements defined by the objective function and the maximum number of evaluations that are allowed

    Design hazard identification and the link to site experience

    Get PDF
    The training, development and routes to charteredship of building design engineers have undergone a major transformation in recent years. Additionally, the duration and quality of site experience being gained by designers is reducing. While accident causation is often complex, previous research shows a potential link between design and construction accidents. The effectiveness of the UK’s Construction (Design and Management) (CDM) Regulations is being questioned, and designers regularly do not recognise the impact they can make on site safety. A newly developed hazard perception test was used to determine if students and design practitioners are able to identify hazards in designs and to establish if site experience impacts hazard identification. The results of the tests show an association between the ability to identify and mitigate hazards and possession of site experience. The results provide empirical evidence that supports previous anecdotal evidence. The results also question if the design engineers of today are suitably equipped to fulfil the designer’s responsibilities under the CDM Regulations

    Combining dynamic relaxation method with artificial neural networks to enhance simulation of tensegrity structures

    Get PDF
    Abstract: Structural analyses of tensegrity structures must account for geometrical nonlinearity. The dynamic relaxation method correctly models static behavior in most situations. However, the requirements for precision increase when these structures are actively controlled. This paper describes the use of neural networks to improve the accuracy of the dynamic relaxation method in order to correspond more closely to data measured from a full-scale laboratory structure. An additional investigation evaluates training the network during the service life for further increases in accuracy. Tests showed that artificial neural networks increased model accuracy when used with the dynamic relaxation method. Replacing the dynamic relaxation method completely by a neural network did not provide satisfactory results. First tests involving training the neural network online showed potential to adapt the model to changes during the service life of the structure. DOI: 10.1061/�ASCE�0733-9445�2003�129:5�672

    Probabilistic Modeling of Space Shuttle Debris Impact

    Get PDF
    On Feb 1, 2003, the Shuttle Columbia was lost during its return to Earth. As a result of the conclusion that debris impact caused the damage to the left wing of the Columbia Space Shuttle Vehicle (SSV) during ascent, the Columbia Accident Investigation Board recommended that an assessment be performed of the debris environment experienced by the SSV during ascent. A flight rationale based on probabilistic assessment is used for the SSV return-to-flight. The assessment entails identifying all potential debris sources, their probable geometric and aerodynamic characteristics, and their potential for impacting and damaging critical Shuttle components. A probabilistic analysis tool, based on the SwRI-developed NESSUS probabilistic analysis software, predicts the probability of impact and damage to the space shuttle wing leading edge and thermal protection system components. Among other parameters, the likelihood of unacceptable damage depends on the time of release (Mach number of the orbiter) and the divot mass as well as the impact velocity and impact angle. A typical result is visualized in the figures below. Probability of impact and damage, as well as the sensitivities thereof with respect to the distribution assumptions, can be computed and visualized at each point on the orbiter or summarized per wing panel or tile zone

    Modification Factor for Shear Capacity of Lightweight Concrete Beams

    Get PDF
    yesThe validity of the modification factor specified in the ACI 318-11 shear provision for concrete members to account for the reduced frictional properties along crack interfaces is examined using a comprehensive database comprised of 1716 normalweight concrete (NWC) beam specimens, 73 all-lightweight concrete (ALWC) beam specimens, and 54 sand-lightweight concrete (SLWC) beam specimens without shear reinforcement. Comparisons of measured and predicted shear capacities of concrete beams in the database show that ACI 318-11 provisions for shear-transfer capacity of concrete are less conservative for lightweight concrete (LWC) beams than NWC beams. A rational approach based on the upper-bound theorem of concrete plasticity has been developed to assess the reduced aggregate interlock along the crack interfaces and predict the shear-transfer capacity of concrete. A simplified model for the modification factor is then proposed as a function of the compressive strength and dry density of concrete and maximum aggregate size on the basis of analytical parametric studies on the ratios of shear-transfer capacity of LWC to that of the companion NWC. The proposed modification factor decreases with the decrease in the dry density of concrete, gives closer predictions to experimental results than does the ACI 318-11 shear provision and, overall, improves the safety of shear capacity of LWC beams
    corecore