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ABSTRACT 

The validity of the modification factor specified in the ACI 318-11 shear provision for concrete 

members to account for the reduced frictional properties along crack interfaces is examined using a 

comprehensive database comprising of 1716 normal weight concrete (NWC), 73 all-lightweight 

concrete (ALWC) and 54 sand-lightweight concrete (SLWC) beam specimens without shear 

reinforcement. Comparisons of measured and predicted shear capacities of concrete beams in the 



 

2 

database show that ACI 318-11 provisions for shear transfer capacity of concrete are more un-

conservative for lightweight concrete (LWC) beams than in NWC beams. A rational approach based 

on the upper-bound theorem of concrete plasticity has been developed to assess the reduced 

aggregate interlock along the crack interfaces and predict the shear transfer capacity of concrete. A 

simplified model for the modification factor is then proposed as a function of the compressive 

strength and dry density of concrete and maximum aggregate size on the basis of analytical 

parametric studies on the ratios of shear transfer capacity of LWC to that of the companion NWC. 

The proposed modification factor decreases with the decrease in the dry density of concrete, gives 

closer predictions to experimental results than that in the ACI 318-11 shear provision and, overall, 

improves the safety of shear capacity of LWC beams. 

Keywords: modification factor, lightweight concrete, shear capacity, beam, ACI 318-11. 

 

INTRODUCTION 

Aggregate interlock along inclined cracks in concrete beams without shear reinforcement is 

generally recognized to transfer a considerable amount of shear.
1-3

 Taylor
1
 concluded that up to 50% 

of the applied shear force can be transferred by aggregate interlock, whereas Sherwood et al.
3
 

showed that the increase of maximum aggregate size from 9.5 mm (0.37 in.) to 21 mm (0.82 in.) 

resulted in a 24% increase of shear strength of one-way reinforced concrete slabs. Shear transfer 

owing to aggregate interlock along inclined cracks in concrete beams is greatly affected by the 

strength and maximum size of aggregates, as roughness of crack planes is significantly dependent 

on whether cracks penetrate through coarse aggregates.
4
 Yang et al.

5, 6
 demonstrated that the failure 

plane of normal-strength normal-weight concrete beams is formed through the paste around 

aggregate particles, whereas that of lightweight concrete (LWC) beams mainly penetrates through 

coarse aggregate particles. However, the increase of lightweight aggregate size produces a slightly 



 

3 

rougher failure surface.
6
 Therefore, shear transfer by aggregate interlock is expected to be lower in 

LWC beams than normal-weight concrete (NWC) beams. 

ACI 318-11
7
 recommends a modification factor to account for the reduced shear transfer 

contribution of LWC owing to the softened aggregate interlock at inclined crack interfaces. This 

modification factor was introduced by Ivey and Buth
8
 based on a regression analysis of limited 26 

LWC beam specimens. However, the accuracy and reliability of this modification factor remain 

controversial, and their application can be problematic because of a lack of mathematical consensus 

on shear transfer mechanism along crack interfaces in LWC elements. Yang et al.
5, 6

 showed that the 

modification factor specified in ACI 318-11 is unconservative for the LWC continuous beams tested 

and the lack of conservatism increases as the maximum aggregate size increases. Therefore, a more 

rational analytical model for the modification factor would be welcomed to reasonably explain the 

reduced friction properties along crack interfaces of LWC beams. 

The present study evaluates the safety of the shear design provisions of ACI 318-11 against a 

comprehensive database comprising of 1716 normal weight concrete (NWC), 73 all-lightweight 

concrete (ALWC) and 54 sand-lightweight concrete (SLWC) beam specimens without shear 

reinforcement. The validity of the modification factor is examined through the comparisons of 

various statistical parameters according to the type of concrete. The statistical parameters include 

the average, standard deviation, coefficient of variation, and 5% and 95% fractiles of the ratios of 

measured and predicted shear capacities of concrete beams. A mathematical approach to explain the 

shear transfer contribution of aggregate interlock along crack interfaces in concrete members is 

derived based on the upper-bound theorem of concrete plasticity. A simple model for the 

modification factor is then formulated by analytical parametric study of the ratio of shear transfer 

capacities of LWC to the companion NWC. 

SIGNIFICANCE OF RESEARCH 
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This investigation assesses the modification factor of ACI 318-11 shear provision for concrete 

members without shear reinforcement using a comprehensive database of NWC, ALWC, and 

SLWC. On the basis of the plasticity theorem of concrete, it was found that the shear transfer 

contribution of concrete owing to aggregate interlock along crack interfaces mainly depends on the 

density of concrete and maximum aggregate size. Overall, the proposed modification factor 

improves the safety of the shear provision of ACI 318-11 for LWC beams, but has little influence on 

the accuracy of the shear provision, especially for deep beams. 

BEAM SHEAR DESIGN IN ACI 318-11 

ACI 318-11 differentiates between deep and slender beams according to the load transfer 

mechanism. The applied load in deep beams having shear span-to-overall depth ratio ha /  below 

2.0 is commonly transferred to supports through diagonal concrete struts. On the other hand, the 

main load transfer mechanism in slender beams is the beam action characterised by inclined cracks 

owing to the combination of shear and flexural stresses. Consequently, ACI 318-11 formulates shear 

transfer capacity of concrete beams without shear reinforcement as a function of the capacity and 

inclination of struts for deep beams, whereas by a function of concrete compressive strength, 

longitudinal tensile reinforcement ratio and shear span-to-depth ratio for slender beams. ACI 318-11 

also includes a modification factor   to account for the reduced frictional properties along inclined 

crack interfaces of lightweight concrete, proposed by Ivey and Buth
8
. Therefore, ACI 318-11 

specifies the shear transfer contribution cV  of concrete in beams as follows:  

 sin'

swccc wbfV           for 0.2/ ha        (1.a) 

dbfdb
M

dV
fV wcw

u

u
scc

'' 29.01716.0  







          for 0.2/ ha    (1.b) 

where c = effectiveness factor of concrete, which is given as 0.6 for concrete struts having no shear 

reinforcement, '

cf = concrete compressive strength [in MPa (1MPa=145 psi)], wb  and d = beam 
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section width and effective depth, respectively [in mm (1 mm=0.039 in.)], sw  and  = concrete strut 

width [in mm (1 mm=0.039 in.)] and inclination, respectively, s = longitudinal reinforcement ratio, 

and uV  and uM = factored shear force [in N (1 N=0.2248 lb)] and moment [in N·mm (1 N·mm= 

0.7375 lb·ft)], respectively, at the beam section considered. The modification factor   may be 

obtained from the splitting tensile strength spf  [in MPa (1MPa=145 psi)] of LWC using the 

following formula:   0.156.0/ '  csp ff . Alternatively, for beams where splitting tensile 

strength of concrete is not measured, ACI 318-11 recommends that  =0.75 for ALWC, 0.85 for 

SLWC and 1.0 for NWC. A linear interpolation between 0.85 and 1.0 can be followed to obtain a 

more representative value of   according to the volumetric fractions of lightweight fine aggregates 

for concrete containing normal-weight and lightweight aggregates. 

The variation of the normalized shear transfer capacity '/ cwc hfbV  calculated using Eq. (1) against 

ha /  for NWC, ALWC, and SLWC is shown in Fig. 1. The figure also presents the details of beams 

considered. The width and inclination of concrete struts required by Eq. 1(a) were determined using 

the schematic procedure proposed by Yang and Ashour
9
. The common features of shear provision 

specified in ACI 318-11 can be summarized as follows: 1) the shear capacity of LWC beams is 

lower by the modification factor than that of the companion NWC beams, regardless of ha / ; 2) the 

shear capacity of concrete beams decreases with the increase of ha /  up to 2.0, beyond which it 

remains constant; and 3) there is an unrealistic sudden discontinuity of shear capacity at ha /  of 2.0. 

Therefore, the modification factor   plays a significant role in determining the shear transfer 

capacity of LWC in accordance with ACI 318-11 shear provision. 

Database of concrete beams without shear reinforcement 

A total of 1716 NWC, 73 ALWC and 54 SLWC beams without shear reinforcement were 

compiled from different sources. In the database, there are 1310 and 406 NWC slender and deep 

beams, respectively, 38 and 35 ALWC slender and deep beams, respectively, and 43 and 11 SLWC 
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slender and deep beams, respectively. The proportion of ALWC and SLWC beam specimens (6.9%) 

is very small compared with that of NWC beam specimens, indicating that further experimental 

investigations may be required to reasonably evaluate the shear transfer capacity of lightweight 

concrete in beams. Test results originally collected by Collins et al.
10

, Yang and Ashour
11

 and Yang 

et al.
12

 were the main sources of NWC beams in the database. On the other hand, test results 

obtained from Ivey and Buth
8
, Clarke

13
, Hanson

14
, Kim and Park

15
, Kim et al.

16
, Park et al.

17
, 

Thorenfeldt and Stemland
18

, and Yang et al.
5, 6

 were the main sources for lightweight concrete 

beams. All test specimens in the database were reported to have failed in shear. The distributions of 

main parameters are summarized in Table 1 for deep and slender beams of different concrete types. 

The dry density   of concrete varies between 1236 kg/m
3
 (76.6 lb/ft

3
) and 1735 kg/m

3
 (107.6 

lb/ft
3
) for ALWC, and between 1700 kg/m

3
 (105.4 lb/ft

3
) and 2024 kg/m

3
 (125.5 lb/ft

3
) for SLWC. 

The NWC beam specimens had a relatively low '

cf  of 6 MPa (0.87 ksi) and very high '

cf  of 130 

MPa (18.85 ksi). On the other hand, the compressive strength of LWC beam specimens ranged from 

20 MPa (2.90 ksi) to 40 MPa (5.80 ksi). The longitudinal tensile reinforcement ratio varied between 

0.005 and 0.035 for NWC beams, and between 0.01 and 0.03 for LWC beams. Deep beams are 

primarily tested at ha /  between 1.0 and 2.0, whereas ha /  of slender beams mostly ranged between 

2.5 and 5.0 for NWC and between 2.5 and 3.0 for LWC. All of the collected deep beams were 

reported to be failed owing to crushing and sliding of concrete struts joining load and reaction 

points. 

Comparisons between ACI 318-11 predictions and test results 

The ratio between measured .)( ExpcV  shear transfer capacities of concrete beams without shear 

reinforcement and predictions 11318)( ACIcV  obtained from ACI 318-11 shear provisions would 

produce the code safety factor cs  as defined below: 

11318. )/()(  ACIcExpccs VV          (2) 



 

7 

Values of cs  below 1.0 indicate unconservative predictions of shear transfer capacity of concrete 

in beams. A statistical evaluation of the distribution of cs  is conducted to grasp the safety and 

accuracy of the ACI 318-11 shear design guidelines. The statistical parameters evaluated include the 

average mcs , , standard deviation scs , , coefficient of variation vcs , , and 5% %5,cs and 95% %95,cs  

fractiles of cs  as test specimens collected from various sources have different geometrical 

dimensions, material properties and test setup. The 5% and 95% fractiles are calculated from 

statistics as follows
19

: 

scsmcscs K ,0,%5,             (3. a) 

scsmcscs K ,0,%95,             (3. b) 

The coefficient 0K  depends on the number n  of test data used to compute the average and 

standard deviation of the selected samples. According to the statistical theory
19

, 0K  may be 

assumed as 1.645, 2.010 and 2.685 for n 120, n 40, and n 10, respectively; 0K  values for n  

between the above stated values may be calculated from linear interpolation. 

The distributions of cs  are plotted against '

cf  and ha /  in Figs. 2 and 3, respectively. Statistical 

parameters are also calculated for subsets of the test specimens and presented in the same figures. In 

addition, different statistical parameters for all test specimens in the database are listed in Table 2 

for slender and deep beams and also different concrete mixes. For NWC beams, the 5% fractile 

decreases with the increase of '

cf , regardless of the beam type, and the lowest 5% fractile is 

observed in beams having 0.2/0.1  ha . This indicates that the concrete shear capacity provision 

specified in ACI 318-11 is unconservative even for NWC beams, showing a higher un-safety in 

deep beams than in slender beams. For slender beams with '

cf  between 20 (2.90) and 50 MPa (7.25 

ksi), the lowest 5% fractile is exhibited by SLWC beams. The average, 95% fractile and 5% fractile 

are generally lower for LWC beams than NWC beams, especially for deep beams as indicated in 



 

8 

Table 2. Therefore, the ACI 318-11 provisions for shear transfer capacity of concrete becomes more 

un-conservative in LWC beams, in particular for deep beams. 

PROPOSED MODIFICATION FACTOR FROM PLASTICITY ANALYSIS 

Angle of concrete friction 

According to Coulomb frictional hypothesis
20

, the shear capacity of concrete beams governed by 

concrete web failure along inclined cracks significantly depends on cohesion and internal friction 

along crack interfaces. Furthermore, deep beams commonly fail along the inclined cracks joining 

the loading and supporting points within the concrete strut, which is accompanied by crushing of the 

concrete strut and sliding along concrete web cracks. The coefficient of friction of concrete can be 

obtained from the sliding resistance of concrete interfaces subjected to pure shear stress. If concrete 

is regarded as a perfectly plastic material obeying a modified Coulomb failure criteria, the condition 

for sliding failure under pure shear stresses can be expressed as follows (See Fig. 4): 

   cos
2

1
31  c           (4) 

where 1  and 3 = principal stresses, which equal to v  in case of pure shear stresses v , and c = 

cohesion of concrete. The cohesion of concrete with sliding failure is expressed as 

  2* 12/  cf , where *

cf = effective compressive strength of concrete,   tan = coefficient 

of friction, and  = angle of friction
20

. The state of stress at the web of concrete beams may be 

reasonably assumed to be under pure shear as normal stresses applied at the web are very small 

enough to be negligible. Hence, the shear transfer stress cv  of concrete along the crack interface 

occurred at the beam web can be expressed as follows: 

     






2

*

2

*

tan1tan2

cos

12

cos





 cc

c

ff
v        (5) 
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Based on the upper-bound theorem of concrete plasticity, Yang et al.
21

 showed that the shear 

transfer stress cv  of concrete interface without shear reinforcement can be written in the following 

form: 

]sin[
cos

1

2

1 * 


mlfv cc                (6) 

where 




sin1

sin
21

*

*




c

t

f

f
l , 

sin1

1
21

*

*




c

t

f

f
m , 
















 

yyx

x

22

1tan2 , lmx / , 

lmly /22  , and *

tf = effective tensile strength of concrete.  

The effective strength of concrete can be determined from equating the area of the rigid-perfectly 

plastic stress-strain curve to that of the actual stress-strain curve. Yang et al.
21

 derived a rational 

approach based on a numerical analysis to calculate the effectiveness factors in compression and 

tension of concrete using the stress-strain relationships. In this approach, the basic equations 

generalized by Yang et al.
22

 and Hordijk
23

 were, respectively, modified for compressive and tensile 

stress-strain relationships of concrete to account for the effect of dry density of concrete on the 

slopes of ascending and descending branches of the stress-strain curves. The primarily influencing 

parameters on the compressive and tensile effectiveness factors were found to be dependent on '

cf  

and   as well as maximum aggregate size ad . Using the approach established by Yang et al.
21

, a 

parametric study was carried out to generalize the effective strength ratio ** / ct ff   required for the 

estimation of the two parameters l  and m  required by Eq. (6) in the ranges of '

cf  between 20 (2.90) 

and 100 MPa (14.50 ksi),   between 1200 (74.4) and 2200 kg/m
3
 (136.4 lb/ft

3
), and ad  between 4 

(0.16) and 40 mm (1.56 in.). To establish a simple model for ** / ct ff , each variable investigated ( '

tf , 

 , and ad ) was combined and tuned repeatedly by trial-and-error approach until a relatively 
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acceptable correlation coefficient ( 2R ) was obtained. From a nonlinear multiple regression (NLMR) 

analysis of the mathematical results, ** / ct ff  ratio can be obtained as below (see Fig. 5):  

 
38.0

2

0

'

*

* /
03.0















Eco

ac

c

t

f

dcf

f

f


          (7) 

  0.1/
2

0  E                 (8) 

where cof  [= 10 MPa (1.45 ksi)]= reference concrete strength, 0 = dry density of normal weight 

concrete which can be generally assumed to be 2200 kg/m
3
 (136.4 lb/ft

3
)
24

, and 0c  [= 25 mm (0.98 

in.)] = reference size of aggregate.  

Once ** / ct ff  is calculated for given values of  '

cf ,  , and ad  in a concrete beam, by equating 

Eq. (5) and Eq. (6) at sliding failure of concrete interface, the angle of friction   can be obtained as 

below: 

  







cos

sin

tan1tan

cos
2

ml 



         (9) 

As mentioned in Eq. (6), the parameters l , m , and   are functions of ** / ct ff  and  . This 

indicates that   in Eq. (9) is a function of only ** / ct ff ; consequently, it can be numerically 

determined for each value of ** / ct ff . Linear regression analysis of the numerically determined   

against ** / ct ff  produced the following simple formula (see Fig. 6): 

  185.0** /9.22


 ct ff                  (10) 

Nielsen
20

 assumed that concrete modelled as a modified Coulomb material has a constant value 

of   as 37°, regardless of '

cf , whereas Kahraman and Altindag
25

 showed that   commonly  

increases with the increase of the material brittleness. Equation (10) also indicates that   varies 

according to the ratios of effective tensile and compressive strengths of concrete; i.e.   slightly 

increases with the decrease in ** / ct ff . 
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Proposed equation for the modification factor 

Equation (1) indicates that the modification factor   is the ratio of shear transfer capacity of 

LWC to that of the companion NWC. Therefore, the modification factor   to account for the 

reduced frictional properties along crack interfaces can be written in the following form: 

 
 

NWCc

LWCc

v

v
            (11) 

To determine   using Eqs. (5) and (11), numerical parametric study was carried out for normal 

weight concrete having '

cf  between 20 (2.90 ksi) and 80 MPa (11.60 ksi) and ad  between 4 (0.16) 

and 40 mm (1.56 in.), and lightweight concrete of the same condition but   between 1200 (74.4) 

and 2000 kg/m
3
 (124.0 lb/ft

3
). The results obtained from the parametric study were calibrated using 

a nonlinear multiple regression analysis, as plotted in Fig. 7, and thereby a new modification factor 

is finally proposed below: 

0.15.082.0

05.0

0

05.0

'

0

3

0











































c

d

f

f
Ln a

c


       (12) 

Figure 8 shows the comparison of the modification factors calculated by the ACI 318-11 

provision and present study for the continuous lightweight concrete beams
5, 6

. The modification 

factor specified in ACI 318-11 provision is intermittently different from the test results. On the 

other hand, the proposed Eq. (12) gives more conservative values than ACI 318-11 provision. 

Furthermore, the general trend between   and   is consistently reflected in Eq. (12), indicating 

that   decreases with the decrease in  . Overall, the proposed modification factor is more rational 

than the empirical values specified in ACI 318-11 in explaining the reduced frictional properties 

along the inclined crack interfaces. 

Shear capacity prediction of LWC beams according to proposed modification factor 

To examine the accuracy of the proposed modification factor, the shear capacity of LWC beams 

calculated using Eq. (1) combined with Eq. (12) is compared with that of beams in the database. 
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The distribution of the ratio between    
11318 

/
ACIcExpc VV  for LWC beams with the new proposed 

modification factor is presented against the variation of ha /  in Fig. 9. The variation of statistical 

parameters for the proposed modification factor is also shown in Fig. 10 for ALWC and SLWC 

beams. When the proposed modification factor for LWC slender beams is used, most of statistical 

parameters are practically improved, resulting in approximately 15% increase in the 5% fractile 

compared with that using the original modification factor specified in ACI 318-11 (compare Figs. 3 

and 9). This increasing rate of 5% fractile is more notable for ALWC beams with  ha /  between 3.0 

and 4.5 and for SLWC beams with ha /  between 2.0 and 3.0, as shown in Fig. 9. For deep beams 

using the proposed modification factor, the average and 95% fractile values increase from 0.75 to 

1.0 and from 1.35 to 1.84, respectively, for ALWC, and 0.66 to 0.83 and 1.31 to 1.56, respectively, 

for SLWC, whereas the 5% fractile is practically similar, compared with these using the 

modification factor of ACI 318-11. Overall, it can be concluded that the proposed modification 

factor improves the safety of shear provision for LWC beams, with the 15% increase in the 5% 

fractile for slender beams and 19 to 37% increase in the average and 95% fractile for deep beams. 

CONCLUSIONS 

The safety of shear provisions specified in ACI 318-11 is examined using a comprehensive 

database comprising 1716 normal weight concrete (NWC), 73 all-lightweight concrete (ALWC), 

and 54 sand-lightweight concrete (SLWC) beam specimens. Based on the upper-bound theorem of 

concrete plasticity, a simple equation for the modification factor is proposed as a function of the 

compressive strength and dry density of concrete and maximum aggregate size. Different statistical 

parameters for the safety factor of ACI 318-11 shear provision are compared according to the 

proposed and original modification factors. Based on the analytical solution and comparisons with 

the database, the following conclusions may be drawn: 
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1. For NWC beams, the 5% fractile decreases with the increase of concrete compressive 

strength, regardless of the beam type, and the lowest 5% fractile is observed in beams with 

shear span-to-depth ratios between 1.0 and 2.0.  

2. The average, 95% fractile and 5% fractile for all the lightweight concrete (LWC) beam 

specimens are lower than those for NWC beams, in particular for deep beams. Overall, ACI 

318-11 provisions for shear transfer capacity of concrete become more un-conservative in 

LWC beams than in NWC beams due to the overestimation of the modification factor. 

3. The proposed modification factor improves the safety of shear provision for LWC beams, 

for example, an increase of 15% in the 5% fractile for slender beams and 19 to 37% increase 

in the average and 95% fractile for deep beams.  
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NOTATION 

a  = shear span of beam 

wb  = width of beam section 

c  = cohesion of concrete 

0c  = reference aggregate size [= 25 mm (0.98 in.)] 

d  = effective depth of beam section 

ad  = maximum size of aggregate 

'

cf  = concrete compressive strength 
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0f  = reference concrete compressive strength [= 10 MPa (1.45 ksi)] 

*

cf  = effective compressive strength of concrete 

*

tf  = effective tensile strength of concrete 

spf  = splitting tensile strength of concrete 

h  = ovrall depth of beam section 

uM  = factored moment 

n  = number of test data 

cV  = shear capacity of beam without shear reinforcement 

uV  = factored shear force 

cv  = shear transfer stress of concrete 

sw  = width of concrete strut of deep beam 

cs  = ratio of measured shear capacity of beam and prediction obtained from ACI 318-11 

mcs ,  = average of cs  

scs ,  = standard deviation of cs  

vcs ,  = coefficient of variation of cs  

%5,cs  = 5% fractile of cs  

%95,cs  = 95% fractile of cs  

  = inclination of concrete strut of deep beam 

  = modification factor 

c  = effectiveness factor of concrete 

  = dry density of concrete 

0  = reference dry density of concrete [= 2200 kg/m
3
 (136.4 lb/ft

3
)] 
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s  = longitudinal reinforcement ratio of beams 

  = friction angle of concrete 
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Table 1-Distribution of different parameters in the 1391 slender and 452 deep beams without shear reinforcement. (1 mm =0.039 in.; 1 MPa=145 psi) 

wb  

mm 

Range ≤ 50 50-75 75-100 100-125 125-150 150-200 200-250 250-300 ≥ 300  Total 

Slender 

beams 

NWC 45 17 6 129 95 553 143 49 273  1310 

ALWC - - - 1 2 34 1 - -  38 

SLWC - - - 21 11 11 - - -  43 

Deep 

beams 

NWC - 1 24 34 33 220 36 22 36  406 

ALWC - - - - 4 31 - - -  35 

SLWC - - - - 5 6 - - -  11 

h  
mm 

Range ≤ 100 100-200 200-300 300-400 400-550 550-700 700-900 900-1100 ≥ 1100   

Slender 

beams 

NWC 24 183 358 411 187 32 14 72 29  1310 

ALWC - - 3 34 1 - - - -  38 

SLWC - - 37 6 - - - - -  43 

Deep 

beams 

NWC - 14 48 146 99 59 15 25 -  406 

ALWC - - 4 31 - - - - -  35 

SLWC - - 9 2 - - - - -  11 

'

cf  

MPa 

Range ≤ 20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 ≥ 100  

Slender 

beams 

NWC 117 397 319 117 108 82 58 48 49 15 1310 

ALWC 2 16 18 1 - - - - 1 - 38 

SLWC - 7 12 8 14 2 - - - - 43 

Deep 

beams 

NWC 63 166 86 27 14 24 18 5 1 2 406 

ALWC - 13 14 3 2 - 1 2 - - 35 

SLWC - - 6 1 4 - - - - - 11 

s  

(%) 

Range ≤ 0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-5.0 ≥ 5.0  

Slender 

beams 

NWC 25 185 164 398 139 161 149 27 34 28 1310 

ALWC - 3 23 - 4 8 - - - - 38 

SLWC - 5 4 24 4 6 - - - - 43 

Deep 

beams 

NWC 19 79 51 90 38 43 43 17 16 10 406 

ALWC - 3 8 - 3 16 - - - 5 35 

SLWC - 3 1 4 1 - 2 - - - 11 

ha /  

Range 0.2-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-4.0 4.0-5.0 5.0-6.0 ≥ 6.0  

NWC 34 92 166 114 387 460 324 89 34 16 1716 

ALWC - 2 - 33 - 15 - 22 - - 73 

SLWC - - 6 5 5 29 9 - - - 54 
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Table 2-Statistical parameters for code safety factor for NWC, ALWC and SLWC beams. 

Quantity 

NWC ALWC SLWC 

Slender 

beams 

Deep 

beams 

Slender 

beams 

Deep 

beams 

Slender 

beams 

Deep 

beams 

Average ( mcs , ) 1.33 0.97 1.11 0.74 1.22 0.66 

Standard 

deviation ( scs , ) 0.42 0.46 0.23 0.28 0.32 0.25 

Coefficient of 

variation ( vcs , ) 0.31 0.47 0.21 0.37 0.26 0.38 

95% fractile 

( %95,cs ) 2.01 1.72 1.57 1.32 1.85 1.31 

5% fractile 

( %5,cs ) 0.64 0.21 0.64 0.16 0.58 0.01 
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Fig. 1-Shear capacity of concrete beams calculated using ACI 318-11 equations. 

(1 mm =0.039 in.; 1 MPa=145 psi) 
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Fig. 2-Variation of the code safety factor according to concrete compressive strength. 

(1 MPa=145 psi) 
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Fig. 3-Code safety factor according to the shear span-to-overall depth ratio of beam. 
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Fig. 4-Mohr’s circle for sliding failure under pure shear. 
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Fig. 6-Relationship of ** / ct ff  and  . 
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Fig. 7-Proposed modification factor for lightweight concrete.  
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Fig. 8-Comparison of the measured modification factor and predictions from the current 

investigation and ACI 318-11. 
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Fig. 9-Variation of code safety factor of LWC beams when the proposed modification factor is used. 
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Fig. 10-Comparisons of statistical parameters for LWC beams 

according to the modification factors. 
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