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Abstract 

Using the general purpose finite element package ABAQUS, 3-D finite element a 

model representing 20 storey buildings were first built by the authors to perform the 

progressive collapse analysis. Shell elements and beam elements were used to 

simulate the whole building incorporating nonlinear material characteristics and 

non-linear geometric behavior. The modeling techniques were described in detail. 

Numerical results are compared with the experimental data and good agreement is 

obtained. Using this model, the structural behavior of the building under the sudden 

loss of columns for different structural systems and different scenarios of column 

removal were assessed in detail. The models accurately displayed the overall behavior 

of the 20 storey buildings under the sudden loss of columns, which provided 

important information for the additional design guidance on progressive collapse.    
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1 INTRODUCTION  

Progressive collapse first attracted the attention of engineers from the structural 

failure of a 22-story apartment building at Ronan Point, London, UK, in 1968. The 

terminology of progressive collapse is defined as ‘‘the spread of an initial local 

failure from element to element, eventually resulting in the collapse of an entire 

structure or a disproportionately large part of it’’ [1]. After the event of 11 September 

2001, more and more researchers have started to refocus on the causes of progressive 

collapse in building structures, seeking ultimately the establishment of rational 

methods for the assessment and enhancement of structural robustness under extreme 

accidental events. The UK Building Regulations [2] has led with requirements for the 

avoidance of disproportionate collapse. These requirements, which are refined in 

material-specific design codes (e.g. BS5950 [3] for structural steelwork), can be 

described as (i) prescriptive ‘tying force’ provisions which are deemed sufficient for 

the avoidance of disproportionate collapse (ii) ‘notional member removal’ provisions 

which need only be considered if the tying force requirements could not be satisfied, 

and (iii) ‘key element’ provisions applied to members whose notional removal causes 

damage exceeding prescribed limits. In the United States the Department of Defense 

(DoD) [4] and the General Services Administration (GSA) [5] provide detailed 

information and guidelines regarding methodologies to resist progressive collapse of 

building structures. Both employ the alternate path method (APM) to ensure that 

structural systems have adequate resistance to progressive collapse. APM is a threat 

independent methodology, meaning that it does not consider the type of triggering 

event, but rather, considers building system response after the triggering event has 

destroyed critical structural members. If one component fails, alternate paths are 

available for the load and a general collapse does not occur. The methodology is 

generally applied in the context of a ‘missing column’ scenario to assess the potential 

for progressive collapse and used to check if a building can successfully absorb loss 
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of a critical member. The technique can be used for the design of new buildings or for 

checking the capacity of an existing structure.   

Izzuddin et al [6][7], proposed a novel simplified framework for progressive collapse 

assessment of multi-storey buildings, considering sudden column loss as a design 

scenario. It analyzed the nonlinear static response with dynamic effects evaluated in a 

simple method. It offers a practical method for assessing structural robustness at 

various levels of structural idealization, and importantly it takes the debate on the 

factors influencing robustness away from the generalities towards the quantifiable. 

Kim et al [8] studied the progressive collapse-resisting capacity of steel moment 

resisting frames using alternate path methods recommended in the GSA and DoD 

guidelines. The linear static and nonlinear dynamic analysis procedures were carried 

out for comparison. It was observed that the nonlinear dynamic analysis provided 

larger structural responses and the results varied more significantly. However the 

linear procedure provided a more conservative decision for progressive collapse 

potential of model structures. Khandelwal et al [9] studied the progressive collapse 

resistance of seismically designed steel braced frames with validated two dimensional 

models. Two types of braced systems are considered: namely, special concentrically 

braced frames and eccentrically braced frames. The study is conducted on previously 

designed 10-story prototype buildings by applying the alternate path method. The 

simulation results show that while both systems benefit from placement of the 

seismically designed frames on the perimeter of the building, the eccentrically braced 

frame is less vulnerable to progressive collapse than the special concentrically braced 

frame. Paik et al [10] investigated the possibility of progressive collapse of a 

cold-formed steel framed structure. Five different analysis cases were considered. The 

results showed that the removal of corner wall columns appeared to cause progressive 

collapse of a portion of the second and third floor of the end bay directly associated 

with the column removal, and not the entire building. Tsai et al [11] conducted the 

progressive collapse analysis following the linear static analysis procedure 

recommended by the US General Service Administration (GSA). Using the 
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commercial program SAP2000, the potential of an earthquake-resistant RC building 

for progressive collapse is evaluated. However, no validation of the accuracy of the 

SAP2000 model is presented. 

Although there are some design guidances as shown above, some major shortcomings 

have been recognized by the researchers. As pointed out by Izzuddin et al [6][7], the 

prescriptive nature of the tying force requirements, deemed sufficient for the 

avoidance of disproportionate collapse yet unrelated to real structural performance, 

and the exclusion of ductility considerations at all levels of the provisions made the 

provisions unsafe. On the other hand, the alternative notional member removal 

provisions are more performance-based, but these are applied with conventional 

design checks, and hence they ignore the beneficial effects of such nonlinear 

phenomena as compressive arching and catenary actions. This in turn can lead to the 

prediction of an unrealistically large damage area exceeding the prescribed limits, 

thus forcing the member to be designed as a key element when this may be 

unnecessary. Therefore, more detailed research toward the progressive collapse of 

multi-storey building is timely. However, as mentioned above, the research on the 

behavior of the progressive collapse of high rise building is quite limited due to the 

limited research tools. Full scale test of this type of problem is not possible due to its 

high cost. A 3-D Finite element model is definitely a best option. However, due to the 

geometric complexity of multi-storey building and poor preprocessing functions of 

current general purpose finite element packages, no full scale 3-D finite element 

model for investigating progressive collapse has been built so far there is also little 

research toward the modeling of the structural behavior of multi-story buildings under 

sudden column loss. Most of the modeling techniques mentioned in section 1 are 

either the simplified models based on current design guidance or two dimensional 

models, which could not accurately monitor the overall structural behavior of the 

whole building.  

In this paper, using the general purpose finite element package ABAQUS [12], a 3-D 
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model is first developed by the authors which enables the nonlinear progressive 

collapse analysis of high rise building. Two 3-D finite element models representing 

20 storey buildings with different structural forms were built to perform the 

progressive collapse analysis. The models accurately displayed the overall behavior of 

the 20 storey buildings under sudden loss of columns, which provided important 

information for additional design guidance on progressive collapse.    

2  FINITE ELEMENT MODEL TECHNIQUE  

2.1 Preprocessing method  

In order to accurately monitoring the structural behaviors of the high-rise building for 

progressive collapse, it is useful to build up a 3-D full scale finite element model. 

However, the preprocessing function of all the general purpose programs such as 

ABAQUS and ANSYS used in the current research is quite limited. Therefore, it is 

difficult to set up a multi-story building model due to the geometric complexity of the 

structures. The geometric shape of the model becomes a key issue of the modeling 

approach. To solve this problem, the multi-story building analysis program ETABS 

[13] was used to set up the whole model geometrically. ETABS is a leading high-rise 

building analysis program. It is easier to set up a high-rise building and mesh the 

whole structure with the preprocessing function of ETABS. However, due to its 

shortcomings, for example it could not simulate the cracking of the concrete slab; 

ETABS is not suitable to perform the progressive collapse analysis. Therefore, the 

output file of the ETABS model is converted into ABAQUS input file using the 

converter program designed by the authors with Visual Basic Language. The 

converter program can transform exactly all the information of the ETABS model 

such as the beam orientation, beam size, shell thickness, shell orientation, moment 

release, constrain equation and the mesh of the shell etc into ABAQUS model. The 

typical floor layout of ETABS model is shown in Fig. 1. 
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2.2 Model setup 

As shown in Fig 2 and 3, two three-dimensional finite element models were created 

using the ABAQUS package to conduct the progressive collapse study of the high-rise 

building. The models replicated the 20 storey buildings with the grid space of 7.5m in 

both directions. The floor height is 3 m for each floor. Two different types of lateral 

stability systems were simulated, which are the typical lateral systems used in the 

current design practice. One is provided by the shear walls of 450mm thick as shown 

in Fig.2 and Fig.3. The gravity load is resisted by both the shear wall and steel frame. 

Another model, with identical grid and level height, is also built as shown in Fig 4. 

For this model, the main lateral stability is provided by cross bracing also shown in 

Fig.4. For both models, the slab thickness are 130mm, the columns are British 

universal column UC356X406X634 from ground floor to level 6, UC356X406X467 

for level 7to level 13, UC356X406X287 for level 14 to level 19, all the beams are 

British universal beam UB533X210X92. The cross bracings are British circular 

Hollow section CHCF 273X12.5. This model simulated the full structural framing 

(primary and secondary beam layout), columns, core supports with full composite 

action of the composite slab. The dimensions and properties of above steel sections 

are listed in Table1. 

2.3 Elements used for simulation 

All the beams and columns are simulated using *BEAM elements in the ABAQUS 

element library. The beam properties are input by defining the relevant cross-sectional 

shape from the pre-defined ABAQUS cross-section library. At each increment of the 

analysis the stress over the cross-section is numerically integrated to define the beams 

response as the analysis proceeds. This allows the analysis to follow the development 

of the full elastic-plastic behaviour of the section at each integration point along the 

beam. The slab and core wall are simulated using the four node *Shell element having 

bending and membrane stiffness terms available from the ABAQUS library. 

Reinforcement was represented in each shell element by defining the area of 

reinforcement at the appropriate depth of the cross-section using the *REBAR 
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element from the ABAQUS library. The main reinforcement included is the A252 

mesh assumed to act 30 mm from the top of the slab and the 0.9mm thick metal deck 

at the bottom of the slab. This reinforcement is defined in both slab directions and was 

assumed to act as a smeared layer. The reinforcement was modeled using the same 

elastic-plastic model as the main structural steel members.  

The structural beam elements are modelled close to the centreline of the main beam 

elements and the composite slab is modelled using shell elements at the centreline of 

the slab.  The beam and shell elements are then coupled together using rigid beam 

constraint equations to give the composite action between the beam elements and the 

concrete slab. The steel beam to column connections is assumed to be fully pinned. 

The continuity across the connection is maintained by the composite slab acting 

across the top of the connection. Therefore, the beam to column connection is more or 

less like a semi-rigid composite connection which is to simulate the characteristic of 

the connections in normal construction practice. 

2.4 Materials model of steel  

The model also incorporates nonlinear material characteristics and non-linear 

geometric behaviour. The material properties of all the structural steel components 

were modelled using an elastic-plastic material model from ABAQUS. The 

incorporation of material nonlinearity in an ABAQUS model requires the use of the 

true stress (  ) versus the plastic strain (pl  ) relationship, this must be determined 

from the engineering stress-strain relationship. The stress-strains relationship in 

compression and tension are assumed to be the same in ABAQUS. The classical metal 

plasticity model defines the post-yield behaviour for most metals. ABAQUS 

approximates the smooth stress-strain behaviour of the material with a series of 

straight lines joining the given data points to simulate the actual material behaviour. 

Any number of points can be used. Therefore, it is possible to obtain a close 

approximation of the actual material behaviour. The material will behave as a linear 

elastic material up to the yield stress of the material. After this stage, it goes into the 
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strain hardening stage until reaching the ultimate stress. As ABAQUS assumes that 

the response is constant outside the range defined by the input data, the material will 

deform continuously until the stress is reduced below this value. 

The elastic part of the stress-strain curve is defined with the *ELASTIC option, the 

value 2.06×105 N/mm2 for the Young’s modulus and 0.3 for Poisson’s ratio were 

used. The plastic part of the stress-strain curve is defined with the *PLASTIC option. 

Steel grade S355 was used for all the structural steel. The yield stress of 460 N/mm2 is 

used for the material of steel rebar. Engineering stresses and strains including the 

yield and ultimate strength obtained from the coupon tests of Fu et al [14] were 

converted into true stresses and strains with appropriate input format for ABAQUS. 

2.5 Materials model of concrete 

The concrete was modelled using a concrete damage plasticity model (as shown in 

Fig.5.) from ABAQUS.  The concrete compressive strength was assumed to be a 

nominal 30 N/mm2.  The compressive yielding curve was taken as that of a typical 

concrete from [15].  The tensile cracking stress was assumed to be, conservatively, 

approximately 5.6% of the peak compressive stress as recommended in [16]. After 

tensile cracking, the stress-strain relationship in tension softens as load is assumed to 

be transferred to the reinforcement.  The tensile strength of the concrete is ignored 

after concrete cracking. The shell elements are integrated at 9 points across the section 

to ensure that the concrete cracking behaviour is correctly captured. 

 

2.6 Boundary condition and mesh size 

 

The models are supported at the bottom as shown in Fig.2 and Fig.4. The mesh 

representing the model has been studied and is sufficiently fine in the areas of interest 

to ensure that the developed forces can be accurately determined. 
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3 VALIDATION OF THE MODEL 

In order to valid the proposed model, a two storey composite steel frame model was 

built up by the authors as shown in Fig. 6 and 7.The model replicated the full scale 

testing of a steel-concrete composite frame by Wang et al [17] as shown in Fig 8. The 

model was set up based on the same modelling techniques discussed in part 2 of this 

paper. The frame size, slab thickness and boundary conditions are exactly the same as 

the full sale tests [17]. The section sizes are shown in Fig.9 and the section properties 

are shown in Table 2. For the proposed model, the bottom of the column was defined 

as fixed. The same material properties of the test were defined using the *Material 

function of ABAQUS for both steel and concrete. As it is shown in Fig.7, the static 

concentrate load was applied at the same location as in the full scale tests as shown 

and Fig.10. The load was applied using the modified RIKS method available in 

ABAQUS which is to simulate the loading procedure during the full scale test. The 

modified RIKS method assumed that the loading is proportional—that is, that all load 

magnitudes vary with a single scalar parameter. In addition, it assumes that the 

response is reasonably smooth—that sudden bifurcations do not occur.  

Fig. 11 shows the modelling results of moment rotation relationship of Frame A, 

Joint1, compared with Fig 12, which is the moment rotation relationship of the full 

scale test of [17]. It can be seen that, good agreement is achieved in the initial 

stiffness and yield strength. However, for the proposed model, it can predict less 

rotation capacity after yielding. As discussed by Fu et al [18], this is due to the 

accuracy of the concrete smeared model of ABAQUS to simulate the concrete 

behaviour after cracking. As we are more concerned with the overall behaviour of the 

building, so this model is accurate enough to conduct the progressive collapse 

analysis.  
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4 COLUMN REMOVAL ANALYSIS 

As stated in section 1, the alternate path method (APM) which is proposed by DOD 

[4] and GSA [5] is applied here to perform the progressive collapse checking of the 

existing 20 storey buildings. As stated in DOD [4] and GSA [5], the methodology is 

generally applied in the context of a ‘missing column’ scenario to assess the potential 

for progressive collapse. Under extreme events, such as blast and impact, the dynamic 

influences are event-independent. Sudden column loss represents a more appropriate 

design scenario, which includes the dynamic influence yet is event-independent. 

Although such a scenario is not identical in dynamic effect to column damage 

resulting from impact or blast, it does capture the influence of column failure 

occurring over a short duration relatively to the response time of the structure. It can 

also be applied to various other extreme dynamic events via calibrated design factors. 

It is therefore sudden column loss is used as the principal design scenario in [4, 5]. 

This method is also adopted by all the researchers introduced in section 1. Moreover, 

for designers, the most important issue is to check if a building can successfully 

absorb the loss of a critical column and prevent progressive collapse. Therefore, the 

ability of the building under sudden column loss is assessed here using nonlinear 

dynamic analysis method with 3-D finite element technique. 

The loads are computed as dead loads (which is the self-weight of the floor) plus 25% 

of the live load (which is 2.5kN/m2).This is determined from the nonlinear dynamic 

analysis for comparison with the acceptance criteria outlined in Table 2.1 of the GSA 

guidelines [5].  

Column removal is conducted by *Remove command from ABAQUS library. The 

dynamic response was recording use *Dynamic command from ABAQUS library. 

The columns to be removed are forcibly removed by instantaneously deleting them, 

and the subsequent response of each braced frame is then investigated. The maximum 

forces, displacements and rotations for each of the members/connections involved in 

the scenario are recorded. The fundamental frequency of a floor plate with a number 
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of columns removed can be expected to be in the region of 1 to 5 Hz.  This means a 

potential period of between 0.2 and 1 second.  Therefore, the column is removed 

over a period of 20 milliseconds. The analysis is then run for a further 2 seconds to 

ensure that the structure has stabilised. Due to the expected material nonlinearity, the 

minimum time increment can be of the order of microseconds which means that 

potentially 1000’s of increments will be needed to complete the analysis. Therefore 

the model developed needs to be as efficient as possible to enable realistic runtimes.  

The simulations are conducted with 5 % mass proportional damping. Table 3 shows 

the list of analysis cases considered in this study together with the members that are 

forcibly removed in each case. To facilitate the following discussion, the columns and 

beams are designated as follows according to the grid line shown in Fig1. For instance, 

Column C1 stands for the column at the junction of grid C and grid 1. Beam E1-D1 

stand for the beam on grid 1 starting from grid E to grid D. 

4.1 Case 1- Column C1 & D1 at ground floor removed 

 

For case 1, when the two columns C1 and D1 as shown in Fig.13 were suddenly 

removed (Case 1 in Table 1), the node on the top of the removed column vibrated and 

substantially reached a peak vertical displacement of 25 mm. The response eventually 

rest at 17mm as shown in Fig. 14. The adjacent beam and column were initially 

overloaded and started deforming inelastically. A large redistribution of forces was 

observed to take place as shown in Fig. 15 the force in column E1 doubled from 2500 

kN to a peak of 4500 kN before settling down at a steady value of 3700 kN. The peak 

force of the beam was accompanied the column force. Concurrently, as shown in Fig. 

16, the force in beam B1-C1 increased to a peak value of 560 kN before settling down 

at a steady value of 400 kN. Other frame members remained in the elastic condition.  
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4.2 Case 2-Column A1 at ground floor removed 

Similar to case 1, when the column A1 at the ground level as shown in Fig.17 was 

suddenly removed (Case 2 in Table 1), the node corresponding to the top of the 

removed column vibrated and reached a peak vertical displacement of 55 mm. The 

response eventually comes to rest at 40mm as shown in Fig. 18. The adjacent beam 

and column were also initially overloaded and started to deform inelastically. A large 

redistribution of forces was observed to take place as shown in Fig. 19. The force in 

column B1 doubled from 2000 kN to a peak of 3600 kN then settled down at a steady 

value of 3100 kN. The peak force in the beam was accompanied by the column force. 

As shown in Fig.20, Concurrently, the force in beam B1-A1 increased to a peak value 

of 400 kN with a steady value of 300 kN. Other frame members remained in the 

elastic region.  

4.3 Case 3-Column A1 Level 14 removed 

For case 3, when the column A1 at level 14 as shown in Fig.21 was suddenly removed 

(Case 3 in Table 1), the node  of the top of the removed column vibrated 

substantially reaching a peak vertical displacement of 60 mm. The response 

eventually comes to rest at 45mm as shown in Fig. 22. The adjacent beam and column 

were initially overloaded and started deforming inelastically. A large redistribution of 

forces was observed to take place as shown in Fig. 23. The force in column B1 at the 

ground level increased from 2000 kN to a peak of 2700 kN before settling down at a 

steady value of 2500 kN. As it is shown in Fig.24, the force in column B1 at level 14 

increased from 600 kN to a peak of 1100 kN with a steady value of 800 kN. The peak 

axial force of the beam was accompanied with the increases in the column force. 

Concurrently, as shown in Fig.25, the force in beam B1-A1 at level 14 increased to a 

peak value of 310 kN before settling down at a steady value of 200 kN. Other frame 

members remained elastic.  
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4.4 Case 4- Column A1 at ground floor removed 

 

In case 4, when the column A1 at ground level as shown in Fig.26 was suddenly 

removed (Case 4 in Table 1), The node  of the top of the removed column starts to 

vibrate and finally  reached a peak vertical displacement of 55 mm. The response 

eventually damped out to rest at 45mm as shown in Fig. 27. The adjacent beam and 

column were initially overloaded and started deforming inelastically. A large 

redistribution of forces was observed to take place as shown in Fig. 28. The force in 

column B1 at the ground level increased from 2000 kN to a peak of 3500 kN before 

settling down at a steady value of 3100 kN. The peak force of the beam was 

accompanied by the increases in column force. Concurrently, as it is shown in Fig.29 

the force in beam B1-A1 at ground level increased to a peak value of 400 kN before 

settling down at a steady value of 310 kN. As it is shown in Fig.30, the axial forces in 

the bracing member were also changed concurrently due to the removal of the 

column.   

 

4.5 Case 5 -Column A1 Level 14 removed 

For the building with the cross bracing lateral resistance system, when the column A1 

at the level 14 as shown in Fig.31 was suddenly removed (Case 5 in Table 1), the 

node corresponding to the top of the removed column vibrates substantially reaching a 

peak vertical displacement of 60 mm. The response eventually rested at 45mm as 

shown in Fig. 32. A large redistribution of forces is observed to take place as shown 

in Fig. 33. The force in column B1 at the ground level increased from 2000 kN to a 

peak of 2700 kN before settling down at a steady value of 2500 kN. As shown in 

Fig.34, the force in column B1 at level 14 increased from 600 kN to a peak of 1100 

kN before settling down at a steady value of 800 kN. The peak force of the beam is 

accompanied the peak force in the column. Concurrently, as it is shown in Fig.35 the 

force in beam B1-A1 on level 4 increased to a peak value of 310 kN before settling 
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down at a steady value of 200 kN. Other frame members remained in the elastic 

region.  

4.6 Analysis result discussion 

From the comparison of case 1 and case 2, it can be seen that the building is more 

vulnerable to the removal of two columns. This is due to the larger affected loading 

area after the column removal which also determines the amount of energy needed to 

be absorbed by the remaining building. From the comparison of case 2 with case 4 

and case 3 with case 5, it can be seen that, for the two different lateral resistance 

systems, the dynamic response of beams and columns are almost identical. This is 

because that the structural grids of these two types of building are the same, thus, the 

affected loading area is the same. It is can be concluded that, the response of the 

structure is only related to the affected loading area after the column removal, which 

also determines the amount of energy need to be absorbed by the remaining building.    

For the structural members like the beam, column and brace, it can be seen that after 

the sudden removal of the column, the axial forces are more or less doubled. As the 

load combination used in the analysis is 1.0DL+0.25LL which is suggested in GSA 

guidelines [5]. So, the members at the same floor level are suggested to be designed to 

have the axial capacity of at least twice the static axial force of the member under the 

1.0DL+0.25LL load combination to prevent potential progressive collapse. For 

instance, in this paper, all the sections used in the models of all the analysis cases, 

such as the ground floor column UC356X406X634 with the capacity of 24500 kN, are 

substantially more than the peek load computed so they are not overloaded. Therefore 

no progressive collapse occurred.   

At the mean time, also for the design of the structures to ensure resistance of the 

progressive collapse, the beam to column connections at the column removal level 

should also have enough capacity to resist the increases in axial force from the beam 

due to the column loss. As the peak axial force in the beams doubled from the static 

state after the sudden removal of the column, so the capacity of the connection should 
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be at least twice the static axial force of the beam under 1.0DL+0.25LL load 

combination as well. 

For both of the two different lateral stability system buildings, the comparison of the 

two scenarios-one corner column removal at ground level and are at level 14, 

suggested that the column removal in level 14 has a larger vertical displacement than 

the column removal at ground floor. This is because, for the column removed at the 

ground floor, more floors participated in absorbing the released energy than that 

occurred with the other scenarios. 

 

5 CONCLUSIONS 

In this paper, a 3-D finite element model was first built with the ABAQUS package to 

simulate the behaviour of multi-storey buildings under sudden column removal. The 

methodology for the modelling techniques is described in details. The model also 

incorporates nonlinear material characteristics and non-linear geometric behaviour.  

A two storey model was built for the validation of the proposed modelling method. 

The numerical results are presented and compared to experimental data and good 

agreement is obtained. The proposed 3-D FE model can accurately represent all the 

main structural behaviour of the multi-story buildings. It offers a reliable and very 

cost-effective alternative to laboratory testing as a way of generating results. Using 

the proposed model, the progressive collapse analysis of two 20 storey buildings with 

different lateral stability systems was conducted under different damage scenario.  

Below are main findings:  

 

1. The dynamic response of the structure is mainly related to the affected loading area 

after the column removal, which also determines the amount of energy need to be 

absorbed by the building.  
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2. All the structural members at the possible column removal level should also be 

designed to at least twice the static axial force obtained when applying the 

1.0DL+0.25LL load combination.  

3. The beam to column connection at the column removal level should also be 

designed to have at least twice the static axial force acting on the connections under 

the 1.0DL+0.25LL load combination. 

4. Under the same general conditions, a column removal at a higher level will induce 

larger vertical displacement than a column removal at ground level. 

The research toward the progressive collapse presented is still in its infancy. Further 

work will be concentrated on more parametric studies to exam detailed structural 

behaviour, and the impact of blast forces on the dynamic structural behaviours. 
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