4,541 research outputs found

    Computing in Additive Networks with Bounded-Information Codes

    Full text link
    This paper studies the theory of the additive wireless network model, in which the received signal is abstracted as an addition of the transmitted signals. Our central observation is that the crucial challenge for computing in this model is not high contention, as assumed previously, but rather guaranteeing a bounded amount of \emph{information} in each neighborhood per round, a property that we show is achievable using a new random coding technique. Technically, we provide efficient algorithms for fundamental distributed tasks in additive networks, such as solving various symmetry breaking problems, approximating network parameters, and solving an \emph{asymmetry revealing} problem such as computing a maximal input. The key method used is a novel random coding technique that allows a node to successfully decode the received information, as long as it does not contain too many distinct values. We then design our algorithms to produce a limited amount of information in each neighborhood in order to leverage our enriched toolbox for computing in additive networks

    Innovator resilience potential: A process perspective of individual resilience as influenced by innovation project termination

    Get PDF
    Innovation projects fail at an astonishing rate. Yet, the negative effects of innovation project failures on the team members of these projects have been largely neglected in research streams that deal with innovation project failures. After such setbacks, it is vital to maintain or even strengthen project members’ innovative capabilities for subsequent innovation projects. For this, the concept of resilience, i.e. project members’ potential to positively adjust (or even grow) after a setback such as an innovation project failure, is fundamental. We develop the second-order construct of innovator resilience potential, which consists of six components – self-efficacy, outcome expectancy, optimism, hope, self-esteem, and risk propensity – that are important for project members’ potential of innovative functioning in innovation projects subsequent to a failure. We illustrate our theoretical findings by means of a qualitative study of a terminated large-scale innovation project, and derive implications for research and management

    Combinations of motor measures more strongly predict adverse health outcomes in old age: the rush memory and aging project, a community-based cohort study

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Motor impairment in old age is a growing public-health concern, and several different constructs have been used to identify motor impairments in older people. We tested the hypothesis that combinations of motor constructs more strongly predict adverse health outcomes in older people.</p> <p>Methods</p> <p>In total, 949 people without dementia, history of stroke or Parkinson's disease, who were participating in the Rush Memory and Aging Project (a longitudinal community-based cohort study), underwent assessment at study entry. From this, three constructs were derived: 1) physical frailty based on grip strength, timed walk, body mass index and fatigue; 2) Parkinsonian Signs Score based on the modified motor section of the Unified Parkinson's Disease Rating Scale; and 3) a motor construct, based on nine strength measures and nine motor performances. Disability and cognitive status were assessed annually. A series of Cox proportional-hazards models, controlling for age, sex and education, were used to examine the association of each of these three constructs alone and in various combinations with death, disability and Alzheimer's disease (AD).</p> <p>Results</p> <p>All three constructs were related (mean <it>r </it>= 0.50, all <it>P </it>< 0.001), and when considered individually in separate proportional-hazards models, were associated with risk of death, incident disability and AD. However, when considered together, combinations of these constructs more strongly predicted adverse health outcomes.</p> <p>Conclusions</p> <p>Physical frailty, parkinsonian signs score and global motor score are related constructs that capture different aspects of motor function. Assessments using several motor constructs may more accurately identify people at the highest risk of adverse health consequences in old age.</p

    The biosocial event : responding to innovation in the life sciences

    Get PDF
    Innovation in the life sciences calls for reflection on how sociologies separate and relate life processes and social processes. To this end we introduce the concept of the ‘biosocial event’. Some life processes and social processes have more mutual relevance than others. Some of these relationships are more negotiable than others. We show that levels of relevance and negotiability are not static but can change within existing relationships. Such changes, or biosocial events, lie at the heart of much unplanned biosocial novelty and much deliberate innovation. We illustrate and explore the concept through two examples – meningitis infection and epidemic, and the use of sonic ‘teen deterrents’ in urban settings. We then consider its value in developing sociological practice oriented to critically constructive engagement with innovation in the life sciences

    CoRoT-22 b: a validated 4.9 RE exoplanet in 10-day orbit

    Get PDF
    The CoRoT satellite has provided high-precision photometric light curves for more than 163,000 stars and found several hundreds of transiting systems compatible with a planetary scenario. If ground-based velocimetric observations are the best way to identify the actual planets among many possible configurations of eclipsing binary systems, recent transit surveys have shown that it is not always within reach of the radial-velocity detection limits. In this paper, we present a transiting exoplanet candidate discovered by CoRoT whose nature cannot be established from ground-based observations, and where extensive analyses are used to validate the planet scenario. They are based on observing constraints from radial-velocity spectroscopy, adaptive optics imaging and the CoRoT transit shape, as well as from priors on stellar populations, planet and multiple stellar systems frequency. We use the fully Bayesian approach developed in the PASTIS analysis software, and conclude that the planet scenario is at least 1400 times more probable than any other false positive scenario. The primary star is a metallic solar-like dwarf, with Ms = 1.099+-0.049 Msun and Rs = 1.136 (+0.038,-0.090) Rsun . The validated planet has a radius of Rp = 4.88 (+0.17,-0.39) RE and mass less than 49 ME. Its mean density is smaller than 2.56 g/cm^3 and orbital period is 9.7566+-0.0012 days. This object, called CoRoT-22 b, adds to a large number of validated Kepler planets. These planets do not have a proper measurement of the mass but allow statistical characterization of the exoplanet population

    Effects of gestational age at birth on cognitive performance : a function of cognitive workload demands

    Get PDF
    Objective: Cognitive deficits have been inconsistently described for late or moderately preterm children but are consistently found in very preterm children. This study investigates the association between cognitive workload demands of tasks and cognitive performance in relation to gestational age at birth. Methods: Data were collected as part of a prospective geographically defined whole-population study of neonatal at-risk children in Southern Bavaria. At 8;5 years, n = 1326 children (gestation range: 23–41 weeks) were assessed with the K-ABC and a Mathematics Test. Results: Cognitive scores of preterm children decreased as cognitive workload demands of tasks increased. The relationship between gestation and task workload was curvilinear and more pronounced the higher the cognitive workload: GA2 (quadratic term) on low cognitive workload: R2 = .02, p<0.001; moderate cognitive workload: R2 = .09, p<0.001; and high cognitive workload tasks: R2 = .14, p<0.001. Specifically, disproportionally lower scores were found for very (<32 weeks gestation) and moderately (32–33 weeks gestation) preterm children the higher the cognitive workload of the tasks. Early biological factors such as gestation and neonatal complications explained more of the variance in high (12.5%) compared with moderate (8.1%) and low cognitive workload tasks (1.7%). Conclusions: The cognitive workload model may help to explain variations of findings on the relationship of gestational age with cognitive performance in the literature. The findings have implications for routine cognitive follow-up, educational intervention, and basic research into neuro-plasticity and brain reorganization after preterm birth
    corecore