98 research outputs found

    The mean free path for electron conduction in metallic fullerenes

    Full text link
    We calculate the electrical resistivity due to electron-phonon scattering for a model of A3C60 (A= K, Rb), using an essentially exact quantum Monte-Carlo calculation. In agreement with experiment, we obtain exceptionally large metallic resistivities at large temperatures T. This illustrates that the apparent mean free path can be much shorter than the separation of the molecules. An interpretation of this result is given. The calculation also explains the linear behavior in T at small T.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Tuning fulleride electronic structure and molecular ordering via variable layer index

    Full text link
    C60 fullerides are uniquely flexible molecular materials that exhibit a rich variety of behavior, including superconductivity and magnetism in bulk compounds, novel electronic and orientational phases in thin films, and quantum transport in a single-C60 transistor. The complexity of fulleride properties stems from the existence of many competing interactions, such as electron-electron correlations, electron-vibration coupling, and intermolecular hopping. The exact role of each interaction is controversial due to the difficulty of experimentally isolating the effects of a single interaction in the intricate fulleride materials. Here we report a unique level of control of the material properties of KxC60 ultra-thin films through well-controlled atomic layer indexing and accurate doping concentrations. Using STM techniques, we observe a series of electronic and structural phase transitions as the fullerides evolve from two-dimensional monolayers to quasi-threedimensional multilayers in the early stages of layer-by-layer growth. These results demonstrate the systematic evolution of fulleride electronic structure and molecular ordering with variable KxC60 film layer index, and shed new light on creating novel molecular structures and devices.Comment: 16 pages, 4 figures, to appear in Nature Material

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    An optically stimulated superconducting-like phase in K3C60 far above equilibrium Tc

    Get PDF
    The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conductor K3C60 can induce a non-equilibrium state with the optical properties of a superconductor. A transient gap in the real part of the optical conductivity and a low-frequency divergence of the imaginary part are measured for base temperatures far above equilibrium Tc=20 K. These findings underscore the role of coherent light fields in inducing emergent order.Comment: 40 pages, 23 figure

    Superconductivity above 30 K in alkali-metal-doped hydrocarbon

    Get PDF
    The recent discovery of superconductivity with a transition temperature (Tc) at 18 K in Kxpicene has extended the possibility of high-Tc superconductors in organic materials. Previous experience based on similar hydrocarbons, like alkali-metal doped phenanthrene, suggested that even higher transition temperatures might be achieved in alkali-metals or alkali-earth-metals doped such polycyclic-aromatic-hydrocarbons (PAHs), a large family of molecules composed of fused benzene rings. Here we report the discovery of high-Tc superconductivity at 33 K in K-doped 1,2:8,9-dibenzopentacene (C30H18). To our best knowledge, it is higher than any Tc reported previously for an organic superconductor under ambient pressure. This finding provides an indication that superconductivity at much higher temperature may be possible in such PAHs system and is worthy of further exploration

    The role of language skills in interactive social book search sessions

    Get PDF
    When searching for books, people frequently have to deal with content that is in a language different from their own. However, research on multilingual systems has generally focused on the user interface's language rather than the content language. In this paper, we describe and compare early results from the multilingual aspects in the Interactive Social Book Search (iSBS) task at CLEF 2014 and 2015. A preliminary analysis of usage patterns for native English and non-native English speakers indicates an influence of language skills on search behaviour during goal-oriented and casual leisure tasks. Based on previous experiences and results, strengths and challenges of IIR studies are discussed

    Electronic states and phases of KxC60 from photoemission and X-ray absorption spectroscopy

    Get PDF
    HIGH-resolution photoemission and soft X-ray absorption spectroscopies have provided valuable information on the electronic structure near the Fermi energy in the superconducting copper oxide compounds 1-4, helping to constrain the possible mechanisms of superconductivity. Here we describe the application of these techniques to K(x)C60, found recently to be superconducting below 19.3 K for x almost-equal-to 3 (refs 5-7). The photoemission and absorption spectra as a function of x can be fitted by a linear combination of data from just three phases, C60, K3C60, and K6C60, indicating that there is phase separation in our samples. The photoemission spectra clearly show a well defined Fermi edge in the K3C60 phase with a density of states of 5.2 x 10(-3) electrons eV-1 angstrom-3 and an occupied-band width of 1.2 eV, suggesting that this phase may be a weakly coupled BCS-like (conventional) superconductor. The C1s absorption spectra show large non-rigid-band shifts between the three phases with half and complete filling, in the K3C60 and K6C60 phases respectively, of the conduction band formed from the lowest unoccupied molecular orbital of C60. These observations clearly demonstrate that the conduction band has C 2p character. The non-rigid-band shift coupled with the anomalous occupied-band width implies that there is significant mixing of the electronic states of K and C60 in the superconducting phase

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page

    Localization of preformed Cooper pairs in disordered superconductors

    Get PDF
    International audienceThe most profound effect of disorder on electronic systems is the localization of the electrons transforming an otherwise metallic system into an insulator. If the metal is also a superconductor then, at low temperatures, disorder can induce a pronounced transition from a superconducting into an insulating state. An outstanding question is whether the route to insulating behaviour proceeds through the direct localization of Cooper pairs or, alternatively, by a two-step process in which the Cooper pairing is first destroyed followed by the standard localization of single electrons. Here we address this question by studying the local superconducting gap of a highly disordered amorphous superconductor by means of scanning tunnelling spectroscopy. Our measurements reveal that, in the vicinity of the superconductor-insulator transition, the coherence peaks in the one-particle density of states disappear whereas the superconducting gap remains intact, indicating the presence of localized Cooper pairs. Our results provide the first direct evidence that the superconductor-insulator transition in some homogeneously disordered materials is driven by Cooper-pair localization

    Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids

    Get PDF
    Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid–solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure
    corecore