449 research outputs found

    The National Food Consumption Survey (NFCS): South Africa, 1999

    Get PDF
    Objective: The aim of the National Food Consumption Survey (NFCS) in South Africa was to determine the nutrient intakes and anthropometric status of children (1-9 years old), as well as factors that influence their dietary intake. Design: This was a cross-sectional survey of a nationally representative sample of all children aged 1-9 years in South Africa. A nationally representative sample with provincial representation was selected using 1996 Census information. Subjects: Of the 3120 children who were originally sampled data were obtained from 2894, a response rate of 93%. Methods: The sociodemographic status of each household was assessed by a questionnaire. Dietary intake was assessed by means of a 24-hour recall and a food-frequency questionnaire from the caregivers of the children. Food purchasing practices were determined by means of a food procurement questionnaire. Hunger was assessed by a modified hunger scale questionnaire. Nutritional status was determined by means of anthropometric measurements: height, weight, head circumference and arm circumference. Results: At the national level, stunting (height-for-age below minus two standard deviations (< -2SD) from the reference median) was by far the most common nutritional disorder, affecting nearly one in five children. The children least affected (17%) were those living in urban areas. Even with regard to the latter, however, children living in informal urban areas were more severely affected (20%) compared with those living in formal urban areas (16%). A similar pattern emerged for the prevalence of underweight (weight-for-age < -2SD), with one in 10 children being affected at the national level. Furthermore, one in 10 (13%) and one in four (26%) children aged 1-3 years had an energy intake less than half and less than two-thirds of their daily energy needs, respectively. For South African children as a whole, the intakes of energy, calcium, iron, zinc, selenium, vitamins A, D, C and E, riboflavin, niacin, vitamin B6 and folic acid were below two-thirds of the Recommended Dietary Allowances. At the national level, data from the 24-hour recalls indicated that the most commonly consumed food items were maize, sugar, tea, whole milk and brown bread. For South African children overall, one in two households (52%) experienced hunger, one in four (23%) were at risk of hunger and only one in four households (25%) appeared food-secure. Conclusion: The NFCS indicated that a large majority of households were food-insecure and that energy deficit and micronutrient deficiencies were common, resulting in a high prevalence of stunting. These results were used as motivation for the introduction of mandatory fortification in South Africa. © The Authors 2005.Conference Pape

    Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London

    Get PDF
    As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.\ud \u

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

    HIV Incidence Remains High in KwaZulu-Natal, South Africa: Evidence from Three Districts

    Get PDF
    Background: HIV prevalence and incidence among sexually active women in peri-urban areas of Ladysmith, Edendale, and Pinetown, KwaZulu-Natal, South Africa, were assessed between October 2007 and February 2010 in preparation for vaginal microbicide trials. Methodology/Principal Findings: Sexually active women 18-35 years, not known to be HIV-positive or pregnant were tested cross-sectionally to determine HIV and pregnancy prevalence (798 in Ladysmith, 1,084 in Edendale, and 891 in Pinetown). Out of these, approximately 300 confirmed non-pregnant, HIV-negative women were subsequently enrolled at each clinical research center (CRC) in a 12-month cohort study with quarterly study visits. Women in the cohort studies were required to use a condom plus a hormonal contraceptive method. HIV prevalence rates in the baseline cross-sectional surveys were high: 42% in Ladysmith, 46% in Edendale and 41% in Pinetown. Around 90% of study participants at each CRC reported one sex partner in the last 3 months, but only 14-30% stated that they were sure that none of their sex partners were HIV-positive. HIV incidence rates based on seroconversions over 12 months were 14.8/100 person-years (PY) (95% CI 9.7, 19.8) in Ladysmith, 6.3/100 PY (95% CI 3.2, 9.4) in Edendale, and 7.2/100 PY (95% CI 3.7, 10.7) in Pinetown. The 12-month pregnancy incidence rates (in the context of high reported contraceptive use) were: 5.7/100 PY (95% CI 2.6, 8.7) in Ladysmith, 3.1/100 PY (95% CI 0.9, 5.2) in Edendale and 6.3/100 PY (95% CI 3.0, 9.6) in Pinetown. Conclusions/Significance: HIV prevalence and incidence remain high in peri-urban areas of KwaZulu-Nata

    From opportunity seeking to gap filling: Reframing Brazil in Lusophone Africa

    Get PDF
    This chapter inquires whether Brazil’s headways in Africa over recent years were organic in nature and in content or, in fact, were achieved at the expense of other previously established actors. By reframing Brazil’s agenda towards African lusophone countries in juxtaposition to the perceived external downturn of Portugal, the propitious context and consequences of a new player on the continent can be best brought into evidence. The push-and-pull forces enacted by both Brazil and Portugal towards Lusophone Africa are explored through the aftermath of the 2012 military coup in Guinea-Bissau and the adhesion of Equatorial Guinea to the Community of Portuguese Language Countries (CPLP) in 2014. The chapter offers a reinterpretation of Brazil’s net gains in Africa and argues for its fragility and susceptibility to changing political-economic cycles.info:eu-repo/semantics/acceptedVersio

    Atomic Force Microscopy Images Label-Free, Drug Encapsulated Nanoparticles In Vivo and Detects Difference in Tissue Mechanical Properties of Treated and Untreated: A Tip for Nanotoxicology

    Get PDF
    Overcoming the intractable challenge of imaging of label-free, drug encapsulated nanoparticles in tissues in vivo would directly address associated regulatory concerns over 'nanotoxicology'. Here we demonstrate the utility of Atomic Force Microscopy (AFM) for visualising label-free, drug encapsulated polyester particles of ~280 nm distributed within tissues following their intravenous or peroral administration to rodents. A surprising phenomenon, in which the tissues' mechanical stiffness was directly measured (also by AFM) and related to the number of embedded nanoparticles, was utilised to generate quantitative data sets for nanoparticles localisation. By coupling the normal determination of a drug's pharmacokinetics/pharmacodynamics with post-sacrifice measurement of nanoparticle localisation and number, we present for the first time an experimental design in which a single in vivo study relates the PK/PD of a nanomedicine to its toxicokinetics

    Formation of Nano-Bio-Complex as Nanomaterials Dispersed in a Biological Solution for Understanding Nanobiological Interactions

    Get PDF
    Information on how cells interface with nanomaterials in biological environments has important implications for the practice of nanomedicine and safety consideration of nanomaterials. However, our current understanding of nanobiological interactions is still very limited. Here, we report the direct observation of nanomaterial bio-complex formation (other than protein corona) from nanomaterials dispersed in biologically relevant solutions. We observed highly selective binding of the components of cell culture medium and phosphate buffered saline to ZnO and CuO nanoparticles, independent of protein molecules. Our discoveries may provide new insights into the understanding of how cells interact with nanomaterials

    Cloaking nanoparticles with protein corona shield for targeted drug delivery

    Get PDF
    Targeted drug delivery using nanoparticles can minimize the side effects of conventional pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based agents into clinical applications still remains a challenge due to the difficulty in regulating interactions on the interfaces between nanoparticles and biological systems. Here, we present a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-transferase. Once thermodynamically stabilized in preferred orientations on the nanoparticles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins to prevent the clearance of nanoparticles by macrophages, while ensuring systematic targeting functions in vitro and in vivo. This study provides insight into the use of the supramolecularly built protein corona shield as a targeting agent through regulating the interfaces between nanoparticles and biological systems

    Cytotoxicity and ion release of alloy nanoparticles

    Get PDF
    It is well-known that nanoparticles could cause toxic effects in cells. Alloy nanoparticles with yet unknown health risk may be released from cardiovascular implants made of Nickel–Titanium or Cobalt–Chromium due to abrasion or production failure. We show the bio-response of human primary endothelial and smooth muscle cells exposed to different concentrations of metal and alloy nanoparticles. Nanoparticles having primary particle sizes in the range of 5–250 nm were generated using laser ablation in three different solutions avoiding artificial chemical additives, and giving access to formulations containing nanoparticles only stabilized by biological ligands. Endothelial cells are found to be more sensitive to nanoparticle exposure than smooth muscle cells. Cobalt and Nickel nanoparticles caused the highest cytotoxicity. In contrast, Titanium, Nickel–Iron, and Nickel–Titanium nanoparticles had almost no influence on cells below a nanoparticle concentration of 10 μM. Nanoparticles in cysteine dissolved almost completely, whereas less ions are released when nanoparticles were stabilized in water or citrate solution. Nanoparticles stabilized by cysteine caused less inhibitory effects on cells suggesting cysteine to form metal complexes with bioactive ions in media
    corecore