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Cloaking nanoparticles with protein corona shield
for targeted drug delivery
Jun Yong Oh1, Han Sol Kim2, L. Palanikumar1, Eun Min Go3, Batakrishna Jana1, Soo Ah Park4, Ho Young Kim3,

Kibeom Kim1, Jeong Kon Seo2, Sang Kyu Kwak 3, Chaekyu Kim 1, Sebyung Kang2 & Ja-Hyoung Ryu 1

Targeted drug delivery using nanoparticles can minimize the side effects of conventional

pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based

agents into clinical applications still remains a challenge due to the difficulty in regulating

interactions on the interfaces between nanoparticles and biological systems. Here, we pre-

sent a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated

recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-

transferase. Once thermodynamically stabilized in preferred orientations on the nano-

particles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins

to prevent the clearance of nanoparticles by macrophages, while ensuring systematic tar-

geting functions in vitro and in vivo. This study provides insight into the use of the supra-

molecularly built protein corona shield as a targeting agent through regulating the interfaces

between nanoparticles and biological systems.

DOI: 10.1038/s41467-018-06979-4 OPEN

1 Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. 2 Department of Biological
Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. 3 Department of Energy Engineering, School of Energy
and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. 4 In Vivo Research Center, UNIST,
Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. These authors contributed equally:
Jun Yong Oh, Han Sol Kim, L. Palanikumar. Correspondence and requests for materials should be addressed to C.K. (email: chaekyu@unist.ac.kr)
or to S.K. (email: sabsab7@unist.ac.kr) or to J.-H.R. (email: jhryu@unist.ac.kr)

NATURE COMMUNICATIONS |          (2018) 9:4548 | DOI: 10.1038/s41467-018-06979-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/161808145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-0332-1534
http://orcid.org/0000-0002-0332-1534
http://orcid.org/0000-0002-0332-1534
http://orcid.org/0000-0002-0332-1534
http://orcid.org/0000-0002-0332-1534
http://orcid.org/0000-0002-3269-6095
http://orcid.org/0000-0002-3269-6095
http://orcid.org/0000-0002-3269-6095
http://orcid.org/0000-0002-3269-6095
http://orcid.org/0000-0002-3269-6095
http://orcid.org/0000-0003-0252-0985
http://orcid.org/0000-0003-0252-0985
http://orcid.org/0000-0003-0252-0985
http://orcid.org/0000-0003-0252-0985
http://orcid.org/0000-0003-0252-0985
mailto:chaekyu@unist.ac.kr
mailto:sabsab7@unist.ac.kr
mailto:jhryu@unist.ac.kr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The application of nanoparticles is promising for the
development of imaging and therapeutic agents through
improved biodistribution and controlled drug release1–3.

The rationale behind using nanoparticles is that those with dia-
meters of <200 nm extravasate from the leaky tumor blood vessels
are retained in the tumor due to the “enhanced permeability and
retention” (EPR) effect4. Although few nanoparticle formulations
(e.g., Abraxane and Doxil) are available in the market, the ubi-
quitous targeting approach suffers from several limitations
including rapid clearance by the mononuclear phagocyte system
(MPS) and low uptake into target tumors5,6. To improve the
targeting ability, along with the EPR effect, an active targeting
approach has been attempted by coating the particle surface with
antibodies, proteins, or peptides that bind to receptors that are
typically overexpressed on cancer cells7. However, recent reports
have revealed only a modest increase in tumor targeting when
this approach is applied; moreover, the addition of targeting
ligands increased the clearance of nanoparticles by MPS, indi-
cating that no definitive conclusion has been reached regarding
the therapeutic efficacy of this technique8,9.

In principle, when exposed to physiological environments, the
nanoparticle surface is covered by various biomolecules to lower
the surface energy by a combination of entropy-driven water
molecule displacement, particle surface charge compensation, and
screening of hydrophobic parts10–12. Biomolecule adsorption
results in the formation of a layer, called a protein corona, and
significantly changes the original molecular identity of the
nanoparticle13. The formation of a protein corona on the nano-
particle surface can be regulated by modifying the nanoparticle
surface with zwitterions, polyethylene glycol (PEG), carbohydrate
moieties, and dysopsonic proteins, which can enhance the col-
loidal stability and prolong the circulation time in blood by
enabling escape from MPS clearance14–17. However, these stra-
tegies are still limited at conferring targeting specificity since an
additional targeting ligand increases the propensity for protein
corona formation to mask the targeting ability and inhibit the
biological effects of nanoparticles18–24. This can explain why
many nanoparticles with active targeting systems have failed in
clinical trials25. Therefore, to design nanoparticle-based ther-
apeutic agents, there is a considerable need to regulate protein
corona formation on nanoparticles26–28 and to obtain a deeper
understanding of the molecular mechanism involved in regulat-
ing nanoparticle–biological interactions. Here, we present a tar-
geting system in which nanoparticles are supramolecularly pre-
coated with a protein corona shield (PCS) that reduce serum
protein absorption while retaining targeting specificity (Fig. 1a).

Results and Discussion
The development of PCS on nanoparticle. To develop PCS
on nanoparticles, we use a recombinant fusion protein,
GST-HER2-Afb, in which HER2-binding affibody (Afb) is
genetically combined with a glutathione-S-transferase (GST)29,
a well-known fusion tag protein, with an extra linker
(GGGLVPRGSGGGCGGGGTGGGSGGG). The preparation of
GST-HER2-Afb (molecular weight: 36.3 kDa, >99.0% purity) is
confirmed by electrospray ionization time-of-flight mass spec-
trometry (Fig. 1b) and sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) (Supplementary Fig. 1A). The sur-
face charge of the GST-HER2-Afb at physiological pH is
approximately −5.25 mV, which is similar to that of GST (−6.29
mV) (Fig. 1c). The intact binding ability of GST-HER2-Afb
is confirmed by monitoring its interactions with the
targeting receptor HER2/ErbB2 in real time using a quartz
crystal microbalance (Supplementary Fig. 1B) and the cellular
uptake of the fluorescein-labeled GST-HER2-Afb to the

HER2-receptor-overexpressing cell line (SK-BR3) (Fig. 1e). These
results indicate that the recombinant fusion protein with the
linker, GST-HER2-Afb, exhibit the ability to bind to the com-
plementary receptor. Furthermore, the toxicity test confirm its
biocompatibility, indicating that GST-HER2 itself is not toxic up
to 10 μM (Supplementary Fig. 1C).

Next, PCS nanoparticles (PCSNs) were constructed by
supramolecularly attaching GST-HER2-Afb to mesoporous silica
nanoparticle (MSN), for which cargo molecules can be loaded in
the interior (Fig. 1a)30. First, 3-(trimethoxysilyl) propyl acrylate
was modified on MSN (mean diameter: 140 ± 10 nm in a dynamic
light scattering (DLS), surface area: 1190 m2/g, pore volume: 1.10
cm3/g, mean pore size: 2.68 nm; Supplementary Fig. 2A–C;
Supplementary Table 1) and glutathione (GSH) was further
attached using thiol-ene click chemistry, which was confirmed by
FT-IR analysis (Supplementary Fig. 2D). The hydrodynamic
radius of the GSH-modified MSN (GSH-MSN) was ~140 ± 20
nm, as confirmed by DLS experiment, and the diameter of GSH-
MSN observed from transmission electron microscopic (TEM)
images was ~90 ± 10 nm (Fig. 1f). GSH modification decreased
the surface area (540 m2/g), pore volume (0.5 cm3/g), and mean
pore size (2.04 nm) (Supplementary Fig. 2B, C; Supplementary
Table 1). Nevertheless, the GSH-MSN showed a decent cargo
loading capacity of 52%, 65%, 11%, and 5% for doxorubicin
(DOX), camptothecin (CPT), DiIC18 (DiI), and DiD, respectively
(Supplementary Fig. 3; Supplementary Table 2).

The GSH-MSN was then coated with GST-HER2-Afb to give
the PCSN through the supramolecular interaction at the GSH-
binding site. The attachment of GST-HER2 on GSH-MSN was
confirmed by measuring the surface charge, which changed from
−40 mV (GSH-MSN) to −5.3 mV (PCSN) (Fig. 1c). The DLS
experiment indicated an increase in the hydrodynamic radius of
PCSN (~270 ± 20 nm) compared with that of GSH-MSN (~140 ±
20 nm) (Supplementary Fig. 4A), and the TEM image analysis
further confirmed the protein-coating layer (Fig. 1f). The
maximum number of GST-HER2-Afb attached on GSH-MSN
was 270 μg/mg, which was confirmed by BCA assay (Supple-
mentary Fig. 4B). No significant aggregation of PCSNs was
observed in the DLS analysis up to 2 weeks at 4 °C (Fig. 1d).

The interaction between PCSN and serum proteins. Next, we
investigated interactions occurring at the interfaces between
serum proteins and PCSNs. Control particles, GSH-MSN, and
PEG-modified MSN (PEG-MSN)31 were used to study the effects
of GST-HER2-Afb pre-coating on particles. We first incubated
PCSN, PEG-MSN, and GSH-MSN with 55% fetal bovine serum
(FBS) for 1, 2, and 4 h and isolated the serum proteins that
adsorbed to them by centrifugation to completely remove
unbound proteins. The molecular composition of the adsorbed
serum proteins was measured by denaturing SDS-PAGE and the
protein density was plotted (Fig. 2a, b). The protein profiles
observed for PEG-MSN and GSH-MSN were fairly similar, but
the intensities of the bands for PCSN were significantly reduced
(~15-fold lower intensity than for GSH-MSN for the case of 1 h of
incubation), indicating that the GST-HER2-Afb pre-coating on
PCSN could reduce the interactions with serum proteins. To
further confirm the particle–protein interactions, the physical
characterizations were also investigated by using DSL, zeta, and
PDI (Supplementary Fig. 5). The treatment of 55% serum on
GSH-MSN and PEG-MSN increased its hydrodynamic radius
and changed its surface charge while PCSN showed no significant
changes, confirming the decreased PCSN–serum protein
interactions.

We then investigated the composition of serum proteins
adsorbed on each particle using shotgun proteomics [liquid

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06979-4

2 NATURE COMMUNICATIONS |          (2018) 9:4548 | DOI: 10.1038/s41467-018-06979-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


chromatography tandem mass spectrometry (LC-MS/MS)]. A
total of 183 proteins were identified and the 78 most abundant
proteins (at levels >0.01% w/w) were selected and divided into
three groups based on the correlation in their relative abundances
on each particle (Group 1: GSH-MSN > PEG-MSN > PCSN,

Group 2: GSH-MSN ≈ PEG-MSN > PCSN, Group 3: GSH ≈
PEG-MSN ≈ PCSN, as shown in Fig. 2c), which exhibited the
lowest tendency to be adsorbed on PCSN. The proteins were
further classified according to the weight, isoelectric point, and
serum protein classification (expressed as a percentage of each
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protein in Fig. 2d, middle). The proteins adsorbed on PCSN were
composed of lower-molecular-weight proteins (20–60 kDa)
(Fig. 2d, left) and included an abundance of proteins with pI of
approximately 7–8 compared with the proteins adsorbed on
GSH-MSN and PEG-MSN (Fig. 2d, right). Moreover, the amount
of immune response involving proteins, complement, and
coagulation proteins adsorbed on PCSN was significantly lower
than those on GSH-MSN and PEG-MSN, suggesting that PCSN
can increase their circulation time in the blood by decreasing the
uptake from the immune system20. It is also noted that the
relative quantity of apolipoproteins among serum proteins
absorbed on PCSN increased with respect to GSH-MSN and to
PEG-MSN (Fig. 2d, middle). Considering that apolipoproteins on
nanoparticle play an important role in association with cellular
uptake to target cells32–34, targeting capability of PCSN partly
could be linked with some serum proteins recruited at the surface
of PCSN.

To understand the interactions between PCS and external
biological components, we investigated the molecular mechan-
isms of the interactions associated with the conformational
change of GST-HER2-Afb. When non-covalently adsorbed on
nanoparticles with precisely designed supramolecular interac-
tion, specific domains of proteins can interact with the surface
of nanoparticles in thermodynamically favorable manners,
leading to the colloidal stabilization and dysopsonization of
particles in a physiological environment35,36. On the other
hand, covalent attachment of their counterparts on particles
significantly changes their conformations and particle surface
properties (e.g., hydrophobicity and charge density), inducing
potential detrimental interactions with external biomolecules,
rather than stabilizing them13,19,37. Therefore, assuming that
the orientation and conformational change of proteins
adsorbed on particles are subject to interaction with serum
proteins, the effects of chemical modification of GST-HER2-
Afb on biological consequences were investigated. First, PCSNs
having randomly orientated GST-HER2-Afb [PCSN(R)s] were
prepared by chemically conjugating GST-HER2-Afb to
succinimidyl-modified MSN via amide formation with amine
groups on the protein surface (Fig. 2e, right). When assessed by
SDS-PAGE (Fig. 2e, left), the protein absorption for PCSN(R)
was enhanced five-fold compared with that for PCSN,
indicating that the randomly orientated conjugation of GST-
HER2-Afb may change surface properties and increase
protein–nanoparticle interactions. Next, the succinic
anhydride-modified PCSN [PCSN(−)] were prepared to gen-
erate additional carboxylate groups on GST-HER2-Afb, which
has a negatively charged function but still binds on GSH-MSN
in the same orientation as GST-HER2-Afb (Fig. 2e, middle).
The SDS-PAGE analysis confirmed that the protein absorption
observed for PCSN(−) was similar to that of PCSN, implying
that once thermodynamically favorably orientated on nano-
particles, the supramolecularly adsorbed proteins can stabilize
the colloid and significantly reduce the interactions with
external serum proteins. We further employed coarse-grained

molecular dynamics method to observe the interactions
between coated silica nanoparticles (i.e. PEG-MSN, PCSN(R),
PCSN (−), and PCSN) and serum protein (i.e. albumin) in the
vicinity of their interface at the molecular level (simulation
method details in the Supplementary Figs. 6–12), which
suggests that the orientation of GST-HER2-Afb attached to
the surface of silica nanoparticles as well as the electrostatic
interactions can be an important factor.

Stealth and targeting effect of PCSN. We studied the cellular
uptake of PCSN by macrophages, one of the most important
components of the immune defense system, which act by clearing
foreign molecules from the blood. Being able to evade inter-
nalization by phagocytic cells would provide a drug carrier that
can accomplish long-term blood circulation and enhanced arrival
at the target tumor38,39. PCSNs or PEG-MSNs loaded with a
fluorescent dye, DiI, were pretreated with 55% FBS for 1 h at 37 °
C and then incubated with a murine macrophage-like cell line,
RAW264.7, for 6 h in culture medium supplemented with 10%
serum (Fig. 3a). Confocal microscopy imaging revealed that the
internalization of the DiI-loaded PEG-MSN was significant, but
was rarely observed for the DiI-loaded PCSN (Fig. 3b), which was
further confirmed by flow cytometry (Fig. 3c). Cell viability
analysis also confirmed reduced cellular uptake of PCSN when
the camptothecin-loaded PCSN was applied (Fig. 3d). These
results indicate that PCS on PCSN significantly reduced inter-
nalization into macrophages. A recent study reported that the
biomolecular corona formation with a specific composition pro-
vides a stealth effect on the macrophage recognition40. Similarly,
our results suggest that the scarce corona formation on PCSN
caused by the supramolecularly pre-coated proteins could confer
stealth properties to evade immune cells and subsequent elim-
ination by the MPS.

Next, to investigate the cell-specific targeting ability of PCSN,
the HER2-receptor-overexpressing cancer cell line SK-BR3 and
the HER2-receptor-negative cell line HEK293T were treated with
Dil- or camptothecin-loaded PCSN after pre-incubation in 55%
FBS for 4 h (Fig. 3e). The significant uptake of Dil-loaded PCSN
by SK-BR3 cells rather than HEK293T cells, mediated by
receptor-mediated endocytosis (especially macropinocytosis),
was confirmed by confocal fluorescence microscopy (Fig. 3f and
Supplementary Fig. 13A) and FACS (Supplementary Fig. 13B).
The targeted internalization was further confirmed by measuring
cellular viability for the camptothecin-loaded PCSN, which
exhibited dose-dependent toxicity on SK-BR3, while exhibiting
lower toxicity on HEK293T (Fig. 3g). A control, HER2-binding
affibody (Afb) modified MSNs (Afb-MSN) was also evaluated and
it confirmed that GST plays an important role in reducing
interactions among the serum proteins as well as supramolecu-
larly conjugating on particle (Supplementary Fig. 14). To examine
the versatile targeting platform for PCS, EGFR-binding Afb
combined with glutathione-S-transferase (GST-EGFR-Afb) was
also applied on GSH-MSN and its targeting ability to MDA-
MB468 cells (EGFR-positive cancer cells) was confirmed

Fig. 1 Protein corona shield nanoparticle (PCSN). a We introduce the protein corona shield (PCS) concept for an efficient target drug delivery system.
Generally, nanoparticle drug carriers with a target ligand lose their targeting ability on being coated by blood proteins in a biological environment. However,
the PCS system can inhibit blood protein adsorption to maintain the targeting ability and avoid unwanted clearance by the mononuclear phagocyte system.
b Mass spectrometry analysis of the GST-HER2-Afb showed a mass of 36.3 kDa. c Zeta-potential analysis of mesoporous silica nanoparticle (MSN) (−23
mV), GSH-MSN (−39mV), GST-HER2-Afb (−5.25mV), and PCSN (−5.3 mV). d Size distribution plots of PCSN. e Images of cellular uptake of fluorescein
5 maleimide-modified GST-HER2-Afb by the target cell (SK-BR3) and the negative control (MCF-10A). f Transmission electron microscopic images of
GSH-MSN and PCSN (scale bar represents 100 nm). All bar graphs were reported as means ± standard deviations (SDs) for three experimental replicates
(n= 3)
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(Supplementary Fig. 15). Taken together, these results show that
PCSN exhibited cell-specific targeting ability as well as stealth
properties.

Effect of PCSN on the targeting and antitumor efficacy. To
translate the outcomes of PCSN in an in vivo tumor model,
nanoparticles loaded with the far-red fluorescent dye DiD were
systemically injected via the tail vein into nude mice (n= 6 mice
per group) bearing SK-BR3 cell xenografts, after which the tumor
accumulation of PCSN was monitored. Considering the lowest
accumulation efficacy of GSH-MSN observed from initial
experiments (Supplementary Fig. 16A), our studies focused on
the comparison between PCSN and PEG-MSN. The in vivo live

imaging results showed the presence of 1.8-fold enhanced fluor-
escent signals in tumor sites from the PCSN-treated group
compared with the PEG-MSN-treated group at 0.5 h after injec-
tion (Supplementary Fig. 16B), which was maintained until 24 h,
while the fluorescent signals for PEG-MSN gradually decreased
with time at 8 h (Supplementary Fig. 16C).

The biodistribution of nanoparticles was then assessed by
measuring the fluorescence of DiD in harvested organs and
tumors upon necropsy 48 h after injection. The fluorescent signals
of tumors from the PCSN group were enhanced 2.5-fold in
comparison with those of the PEG-MSN group (Fig. 4a).
Moreover, the fluorescent intensity in the tumor for the PCSN
group was seven-fold higher than that in reticuloendothelial
organs (e.g., liver and spleen), whereas no significant difference in
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fluorescent intensities between tumors and the reticuloendothelial
organs was observed for the PEG-MSN groups (Fig. 4b),
indicating that PCS enabled the nanoparticles to evade the
immune system and undergo enhanced accumulation in the
target tumor. In vivo antitumor efficacy was further evaluated by
intravenously administering camptothecin-loaded PCSN (PCSN
(CPT)), PEG-MSN (PEG-MSN(CPT)), PCSN, camptothecin
(Free-CPT), and phosphate-buffered saline (PBS) to the SK-
BR3 tumor-bearing mice. Compared with the PEG-MSN(CPT)-
treated group, the PCSN(CPT)-treated group exhibited higher
therapeutic efficacy, resulting in ~90.0% inhibition of tumor
growth in terms of volume and 2.5-fold enhancement of
inhibitory effects (Fig. 4c). Subsequently, by examining tumor
weight reduction and histopathology after necropsy on day 22,
the PCSN(CPT)-treated group was shown to have enhanced
therapeutic efficacy for tumor growth inhibition (Supplementary
Fig. 16D, 17). Additionally, hematoxylin and eosin (H&E)-stained
lung, liver, spleen, and kidney samples showed no apparent
abnormalities or lesions at day 21 after camptothecin-loaded
PCSN treatment (Supplementary Fig. 17). These results indicate

that PCSN increases the tumor targeting ability, enhancing the
efficacy of cancer chemotherapy. Collectively, we found that the
supramolecular binding of GST-HER2-Afb on particles enabled
the maintenance of conformational stability and further mini-
mized interactions with serum proteins. In vitro and in vivo
experiments confirmed that PCSN improved the targeting ability
and therapeutic efficacy. These findings indicate that exploiting
protein coronas can provide a tool for a targeting platform.

Methods
Materials. Cetyltrimethylammonium bromide (CTAB), Pluronic® F-127
(EO106PO70EO106), tetraethyl orthosilicate (TEOS; 98%, reagent grade), fluorescein
isothiocyanate, toluene (99.9% anhydrous), pyridine, dimethylformamide (HPLC
grade), disuccinimidyl suberate, and dimethyl sulfoxide were purchased from
Sigma-Aldrich (Yongin S. Korea). 3-(Trimethoxysilyl) propyl acrylate, (3-amino-
propyl) trimethoxysilane, succinic acid anhydride, and L-glutathione reduced
(>98%) were purchased from Tokyo Chemical Industries (TCI) (Tokyo, Japan).
1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI), DiD
were purchased from Thermo Fisher. CPT was obtained from Ontario Chemicals
Inc. (Ontario, Canada). Doxorubicin (Dox) was obtained from Acorn PharmaTech
(Redwood City, CA, USA). Anhydrous ethanol, sodium hydroxide (NaOH; 99%),
and ammonium hydroxide (29 wt%) were purchased from Samchun Chemical. All
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chemicals were used as received without further purification. Deionized (DI) water
was produced by the Millipore Milli-Q System (18.2 MΩ cm). Isopropyl β-D-1-
thiogalactopyranoside was purchased from Bio Basic. Lysozyme was purchased
from Sigma-Aldrich. PBS (10×) without calcium or magnesium was purchased
from Lonza. One milliliter HisTrap FF column was purchased from GE Health-
Care. DuoflowTM chromatography system was purchased from Bio-rad. BCA
assay was purchased from Thermo Fisher. MassPREP microdesalting column and
Xevo G2 TOF MS were purchased from Waters. All the other chemicals were
purchased from Bioshop. SK-BR-3 cells were purchased from the Korean cell line
bank (KCLB catalog No. 30030). MDA-MB-468 cells were purchased from the
Amerian Type Culuture Collection (ATCC Catalog No. HTB-132). All cell culture
reagents and medium were from Life Technologies (S. Korea) and FBS was pur-
chased from Gold Standard (USA). The graphics found in the figures were created
by a co-author.

Cell culture. Human breast cancer cells derived from the metastatic sites MDA-
MB468 and SK-BR3 were obtained. Normal macrophage cell lines RAW264.7 and
HeK293T were obtained as a gift from Prof. Hyun Woo Rhee at UNIST. SK-BR3
and RAW264.7 cells were cultured in DMEM medium (Invitrogen, S. Korea), and
MDA-MB468 in Leibovitz-L-15 media (Invitrogen, S. Korea) was supplemented
with 10% FBS, 100 µg/mL streptomycin, and 100 U/mL penicillin at 37 °C in a
humidified incubator containing 5% CO2 and 95% air. The medium was replen-
ished every other day, and the cells were subcultured after reaching >85%
confluence.

Cell viability analysis. The in vitro cell viabilities of various formulations against
SK-BR3 and MDA-MB468 cells were determined by performing the Alamar blue
dye assay (Invitrogen, Korea). Briefly, SK-BR3 and MDA-MB468 cells were cul-
tured in 96-well (Thermo Scientific Inc. Korea) micro-titer plates at a density of
5 × 103 cells/well and then allowed to settle for 24 h under incubation at 37 °C, 95%
air, and 5% CO2. Then, the grown cells were treated with different concentrations
of pristine MSN, GSH-MSN, and EGFR- and Her2-Afb-modified MSN (10 µg/mL
to 1 mg/mL) in both cell lines and analyzed after 24-h incubation at an excitation
wavelength of 565 nm and an emission wavelength of 590 nm using a fluorescence
plate reader (Tecan Infinite Series, Germany). Similarly, CPT-loaded EGFR and
Her2 PCSN along with free-CPT were analyzed using similar methods (0.01, 0.1,
0.25, 0.5, 1, 2.5, and 5 µg/mL of CPT).

Cellular uptake analysis. The cellular uptake of CPT-loaded nanoparticles was
investigated with confocal microscopic and flow cytometric analyses. HeK293T,
MDA-MB468, and SK-BR3 cells were seeded into two-well chambers with a cover
glass (Lab Tek II; Thermo Scientific) at a seeding density of 2 × 105 cells/well. After
a 24-h incubation, the cells were treated with CPT-loaded PCSN at a final con-
centration of CPT of 10 µg/mL at different time points and analyzed with confocal
microscopy. Similarly, the cells were stained with lysotracker green (Lysotracker
Green FM DND-26; Invitrogen) to check the colocalization with the CPT-loaded
MSN. To evaluate the drug release from MSN, the FITC-conjugated MSNs were
loaded with CPT and the releases at varying time points (2, 1, and 16 h) were
checked. To evaluate cellular uptake, DiI-loaded MSNs were used for flow

cytometric analysis. HeK293T, SK-BR3, and MDA-MB468 cells were seeded into
six-well plates at a density of 1 × 106 cells per well and incubated in a complete
medium for 24 h at 37 °C, 95% air, and 5% CO2. The concentration of DiI
nanoparticles was equivalent to a DiI dosage of 0.20 µg/mL. After the stipulated
period of 4 and 6 h of incubation, the different treatment cells were trypsinized,
harvested, rinsed with PBS, resuspended, and subjected to flow cytometry assay
using BD-FACS Caliber. All experiments detected ≥10,000 cells, and the data were
analyzed using the FlowJo software.

Endocytic pathway analysis. To check the endocytosis-mediated uptake, SK-BR3
cells were seeded into four-well chambers with cover glass and pretreated with
different inhibitors, including sucrose (clathrin-mediated uptake, 400 nM), methyl-
beta cyclodextrin (caveolae-mediated uptake), and amilorin (macropinocytosis), in
a serum-free DMEM for 1 h and replaced with fresh media. Afterward, DiI-loaded
PCSNs were added to the medium for another 1 h of incubation. Then, the cells
were analyzed with a confocal microscope (Olympus FV1000) connected to a CO2

incubator.

Animals and tumor models. Female nude mice (18 ± 2 g, 6 weeks of age) were fed
under the condition of 22 ± 2 °C and 55 ± 5% humidity, with free access to food
and water. All animal experiments were approved by the Institutional Animal Care
and Use Committee at Ulsan National Institute of Science and Technology and
conducted in compliance with the guidelines (UNIST-IACUC-17-29). To set up
the tumor xenograft model, mice were subcutaneously inoculated in the right lower
leg with 1 × 106 human breast cancer SK-BR3 cells. Tumor volume (V) was
determined by the following equation: V= L ×W2/2, where L andW are the length
and width of the tumor, respectively. SK-BR3 tumor-bearing mice were used in the
experiments when the tumor volumes reached approximately 100 mm3.

In vivo and ex vivo fluorescence imaging. To evaluate the biodistribution of
GSH-MSN, PEG-MSN, and PCSN loaded with a lipophillic dye, DiD (at 10 wt%
loading capacity) was intravenously injected (0.1 mg/mL) into SK-BR3 tumor-
bearing nude mice (7 mice/group). Then, the mice were anesthetized and imaged
using an in vivo imaging system (Bruker Xtreme) with an excitation wavelength of
630 nm and emission wavelength of 700 nm. In vivo images were taken at 0.5, 1, 2,
4, 8, 10, 12, 24, 32, and 48 h. Then, the mice were killed to separate the organs and
tumors for ex vivo imaging to determine the biodistribution pattern of DiD-loaded
nanocarriers.

In vivo tumor inhibition analysis. Female nude mice (average weight 18.5 ± 2 g)
were obtained from Orientbio, Korea, for the in vivo studies. All protocols for the
in vivo experiments were approved by the UNIST-IACUC animal ethics approval
committee. SK-BR3 tumor-bearing mice were used to carry out experiments when
the tumor volumes reached approximately 300 mm3. The tumor-bearing nude
mice were randomly divided into five groups (6 mice per group). PBS, free-CPT,
PCSN, CPT-loaded PEG-MSN, and CPT-loaded PCSN were intravenously injected
into mice every 3 days seven times. CPT dosage was 1.5 mg/kg body weight. The
first day of treatment was defined as day 0. The body weight and tumor size were
recorded every 3 days, and the survival of mice was monitored throughout the
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experiment. The concentrations used for the groups treated with PCSN were the
same as that of CPT-PCSN. After treatment for 21 days, related mice were killed,
and the tumor tissues were removed from the bodies to investigate the morphology
and use for further studies.

Histochemical analysis. At day 22, one mouse in each group was sacrificed to
separate the tumors, and the mice were then fixed in 4% formaldehyde solution in
PBS. For histochemical staining, the fixed tumors were dehydrated by gradient
ethanol washing and embedded in paraffin blocks, sectioned, and stained with
H&E staining.

Statistical analysis. All data were reported as means ± standard deviations (SDs).
Microsoft Excel software was used to calculate P-values for unpaired t-tests. Sta-
tistical significance was determined by using Student’s t-test and one-way analysis
of variance, and P-values of <0.05 were considered to be indicative of statistical
significance.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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