246 research outputs found

    Weak Chaos from Tsallis Entropy

    Full text link
    We present a geometric, model-independent, argument that aims to explain why the Tsallis entropy describes systems exhibiting "weak chaos", namely systems whose underlying dynamics has vanishing largest Lyapunov exponent. Our argument relies on properties of a deformation map of the reals induced by the Tsallis entropy, and its conclusion agrees with all currently known results.Comment: 19 pages, Standard LaTeX2e, v2: addition of the last paragraph in Section 4. Three additional refs. To be published in QScience Connec

    Normative productivity of the global vegetation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The biosphere models of terrestrial productivity are essential for projecting climate change and assessing mitigation and adaptation options. Many of them have been developed in connection to the International Geosphere-Biosphere Program (IGBP) that backs the work of the Intergovernmental Panel on Climate Change (IPCC). In the end of 1990s, IGBP sponsored release of a data set summarizing the model outputs and setting certain norms for estimates of terrestrial productivity. Since a number of new models and new versions of old models were developed during the past decade, these normative data require updating.</p> <p>Results</p> <p>Here, we provide the series of updates that reflects evolution of biosphere models and demonstrates evolutional stability of the global and regional estimates of terrestrial productivity. Most of them fit well the long-living Miami model. At the same time we call attention to the emerging alternative: the global potential for net primary production of biomass may be as high as 70 PgC y<sup>-1</sup>, the productivity of larch forest zone may be comparable to the productivity of taiga zone, and the productivity of rain-green forest zone may be comparable to the productivity of tropical rainforest zone.</p> <p>Conclusion</p> <p>The departure from Miami model's worldview mentioned above cannot be simply ignored. It requires thorough examination using modern observational tools and techniques for model-data fusion. Stability of normative knowledge is not its ultimate goal – the norms for estimates of terrestrial productivity must be evidence-based.</p

    Empirical Foundation of Space and Time

    Get PDF
    I will sketch a possible way of empirical/operational definition of space and time tags of physical events, without logical or operational circularities and with a minimal number of conventional elements. As it turns out, the task is not trivial; and the analysis of the problem leads to a few surprising conclusions

    Training emergency services’ dispatchers to recognise stroke: an interrupted time-series analysis

    Get PDF
    Background: Stroke is a time-dependent medical emergency in which early presentation to specialist care reduces death and dependency. Up to 70% of all stroke patients obtain first medical contact from the Emergency Medical Services (EMS). Identifying ‘true stroke’ from an EMS call is challenging, with over 50% of strokes being misclassified. The aim of this study was to evaluate the impact of the training package on the recognition of stroke by Emergency Medical Dispatchers (EMDs). Methods: This study took place in an ambulance service and a hospital in England using an interrupted time-series design. Suspected stroke patients were identified in one week blocks, every three weeks over an 18 month period, during which time the training was implemented. Patients were included if they had a diagnosis of stroke (EMS or hospital). The effect of the intervention on the accuracy of dispatch diagnosis was investigated using binomial (grouped) logistic regression. Results: In the Pre-implementation period EMDs correctly identified 63% of stroke patients; this increased to 80% Post-implementation. This change was significant (p=0.003), reflecting an improvement in identifying stroke patients relative to the Pre-implementation period both the During-implementation (OR=4.10 [95% CI 1.58 to 10.66]) and Post-implementation (OR=2.30 [95% CI 1.07 to 4.92]) periods. For patients with a final diagnosis of stroke who had been dispatched as stroke there was a marginally non-significant 2.8 minutes (95% CI −0.2 to 5.9 minutes, p=0.068)reduction between Pre- and Post-implementation periods from call to arrival of the ambulance at scene. Conclusions: This is the first study to develop, implement and evaluate the impact of a training package for EMDs with the aim of improving the recognition of stroke. Training led to a significant increase in the proportion of stroke patients dispatched as such by EMDs; a small reduction in time from call to arrival at scene by the ambulance also appeared likely. The training package has been endorsed by the UK Stroke Forum Education and Training, and is free to access on-line

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance
    corecore