86 research outputs found

    Valorisation of red beet waste: one-step extraction and separation of betalains and chlorophylls using thermoreversible aqueous biphasic systems

    Get PDF
    Globally, up to 50% of root crops, fruits and vegetables produced is wasted. Beetroot stems and leaves fit into this scenario, with only a small fraction being used in cattle food. One way of approaching this problem is through their valorisation, by extracting and recovering valuable compounds present in this type of waste that could be used in other applications, while contributing towards a circular economy. In this work, a new integrated process using thermoreversible aqueous biphasic systems (ABS) composed of quaternary ammonium-based ionic liquids (ILs) and polypropyleneglycol 400 g mol−1 (PPG) is shown to allow the one-step extraction and separation of two pigment classes—betalains and chlorophylls—from red beet stems and leaves. The pigment extraction was carried out with a monophasic aqueous solution of the IL and PPG, whose phase separation was then achieved by a temperature switch, resulting in the simultaneous separation of chlorophylls and betalains into opposite phases. A central composite design was used to optimise the extraction parameters (time, temperature, and solid : liquid (S/L) ratio) of both pigment extraction yields, reaching at 20 °C, 70 min and a S/L ratio of 0.12 a maximum extraction yield of 6.67 wt% for betalains and 1.82 wt% for chlorophylls (per weight of biomass). Moreover, it is shown that aqueous solutions of ILs better stabilise betalains than the gold standard solvent used for the extraction method. Among the studied systems, the ABS comprising the IL N-ethyl-N-methyl-N,N-bis(2-hydroxyethyl) bromide ([N21(2OH)(2OH)]Br) presented the best separation performance, with an extraction efficiency of 92% and 95% for chlorophylls and betalains, respectively, for opposite phases. The pigments were removed from the respective phases using affinity resins, with high recoveries: 96% for betalains and 98% for chlorophylls, further allowing the IL reuse. Finally, the cyto- and ecotoxicities of the quaternary ammonium-based ILs were determined. The obtained results disclosed low to negligible toxicity in the thousands of mg L−1 range, with [N21(2OH)(2OH)]Br being harmless from an ecotoxicological point of view. Overall, it is shown here that the developed process is an innovative approach for the one-step extraction and selective separation of pigments contributing to the valorisation of waste biomass

    Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations

    Get PDF
    We prove a multiplicity result of periodic solutions for a system of second order differential equations having asymmetric nonlinearities. The proof is based on a recent generalization of the Poincar\ue9\u2013Birkhoff fixed point theorem provided by Fonda and Ure\uf1a

    Preeclampsia and Blood Pressure Trajectory during Pregnancy in Relation to Vitamin D Status

    Get PDF
    Every tenth pregnancy is affected by hypertension, one of the most common complications and leading causes of maternal death worldwide. Hypertensive disorders in pregnancy include pregnancy-induced hypertension and preeclampsia. The pathophysiology of the development of hypertension in pregnancy is unknown, but studies suggest an association with vitamin D status, measured as 25-hydroxyvitamin D (25(OH)D). The aim of this study was to investigate the association between gestational 25(OH)D concentration and preeclampsia, pregnancy-induced hypertension and blood pressure trajectory. This cohort study included 2000 women. Blood was collected at the first (T1) and third (T3) trimester (mean gestational weeks 10.8 and 33.4). Blood pressure at gestational weeks 10, 25, 32 and 37 as well as symptoms of preeclampsia and pregnancy-induced hypertension were retrieved from medical records. Serum 25(OH)D concentrations (LC-MS/MS) in T1 was not significantly associated with preeclampsia. However, both 25(OH)D in T3 and change in 25(OH)D from T1 to T3 were significantly and negatively associated with preeclampsia. Women with a change in 25(OH)D concentration of ≥30 nmol/L had an odds ratio of 0.22 (p = 0.002) for preeclampsia. T1 25(OH)D was positively related to T1 systolic (β = 0.03, p = 0.022) and T1 diastolic blood pressure (β = 0.02, p = 0.016), and to systolic (β = 0.02, p = 0.02) blood pressure trajectory during pregnancy, in adjusted analyses. There was no association between 25(OH)D and pregnancy-induced hypertension in adjusted analysis. In conclusion, an increase in 25(OH)D concentration during pregnancy of at least 30 nmol/L, regardless of vitamin D status in T1, was associated with a lower odds ratio for preeclampsia. Vitamin D status was significantly and positively associated with T1 blood pressure and gestational systolic blood pressure trajectory but not with pregnancy-induced hypertension

    Phylogenetic Analysis of a Spontaneous Cocoa Bean Fermentation Metagenome Reveals New Insights into Its Bacterial and Fungal Community Diversity

    Get PDF
    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques

    Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick

    Get PDF
    Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Results One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities.</p

    Balanced primary sex ratios and resilience to climate change in a major sea turtle population

    No full text
    This is the final version of the article. Available from Inter Research via the DOI in this record.Global climate change is expected to have major impacts on biodiversity. Sea turtles have temperature-dependent sex determination, and many populations produce highly femalebiased offspring sex ratios, a skew likely to increase further with global warming. We estimated the primary sex ratio at one of the world's largest green turtle Chelonia mydas rookeries in Guinea-Bissau, West Africa, and explored its resilience to climate change. In 2013 and 2014, we deployed data loggers recording nest (n = 101) and sand (n = 30) temperatures, and identified hatchling sex by histological examination of gonads. A logistic curve was fitted to the data to allow predictions of sex ratio across habitats and through the nesting season. The population-specific pivotal temperature was 29.4°C, with both sexes produced within incubation temperatures from 27.6 to 31.4°C: the transitional range of temperatures (TRT). Primary sex ratio changed from maleto female-biased across relatively small temporal and spatial scales. Overall it was marginally female-biased, but we estimated an exceptionally high male hatchling production of 47.7% (95% CI: 36.7-58.3%) and 44.5% (95% CI: 33.8-55.4%) in 2013 and 2014, respectively. Both the temporal and spatial variation in incubation conditions and the wide range of the TRT suggest resilience and potential for adaptation to climate change if the present nesting habitat remains unchanged. These findings underline the importance of assessing site-specific parameters to understand populations' responses to climate change, particularly with regard to identifying rookeries with high male hatchling production that may be key for the future conservation of sea turtles under projected global warming scenarios.Research was funded by the MAVA Foundation, the Rufford Foundation (RSG12317-1, RSG16357-2), and the Portuguese Foundation for Science and Technology through the strategic projects PEst-OE/ BIA/UI0329/2014 granted to cE3c, and UID/MAR/ 04292/ 2013 granted to MARE, project IF/00502/2013/CP1186/ CT0003, and the grant awarded to A.R.P. (fellowship SFRH/ BD/ 85017/2012)
    corecore