106 research outputs found

    The Effect of Egg Embryonation on Field-Use of a Hookworm Benzimidazole-Sensitivity Egg Hatch Assay in Yunnan Province, People's Republic of China

    Get PDF
    With the implementation of mass drug administration programmes for the control of human soil transmitted helminths there is a need to develop drug sensitivity monitoring tools to detect the emergence of resistance. The present study aimed to use an egg hatch assay to measure benzimidazole sensitivity in human hookworms in a field setting in Yunnan province, People's Republic of China, in order to assess whether the assay offered a practical means of monitoring drug sensitivity in human hookworms in such a location. The assay proved able to generate dose response data, which allowed for the drug sensitivity of the hookworms in the local children to be described; the mean IC50 was 0.10 ug/ml thiabendazole. The study also found that practical issues associated with stool collection procedures, specifically the embryonation of some eggs during the time elapsing between stool deposition and egg recovery, can have an impact on the drug sensitivity data. We suggest means for data analysis that overcome the impact of egg embryonation on drug dose response data, which should allow for the use of such assays at different field sites worldwide

    A Novel High Throughput Assay for Anthelmintic Drug Screening and Resistance Diagnosis by Real-Time Monitoring of Parasite Motility

    Get PDF
    Parasitic worms cause untold morbidity and mortality on billions of people and livestock. Drugs are available but resistance is problematic in livestock parasites and is a looming threat for human helminths. Currently, new drug discovery and resistance monitoring is hindered as drug efficacy is assessed by observing motility or development of parasites using laborious, subjective, low-throughput methods evaluated by eye using microscopy. Here we describe a novel application for a cell monitoring device (xCELLigence) that can simply and objectively assess real time anti-parasite efficacy of drugs on eggs, larvae and adults in a fully automated, label-free, high-throughput fashion. This technique overcomes the current low-throughput bottleneck in anthelmintic drug development and resistance detection pipelines. The widespread use of this device to screen for new therapeutics or emerging drug resistance will be an invaluable asset in the fight against human, animal and plant parasitic helminths and other pathogens that plague our planet

    WormAssay: A Novel Computer Application for Whole-Plate Motion-based Screening of Macroscopic Parasites

    Get PDF
    Lymphatic filariasis is caused by filarial nematode parasites, including Brugia malayi. Adult worms live in the lymphatic system and cause a strong immune reaction that leads to the obstruction of lymph vessels and swelling of the extremities. Chronic disease leads to the painful and disfiguring condition known as elephantiasis. Current drug therapy is effective against the microfilariae (larval stage) of the parasite, but no drugs are effective against the adult worms. One of the major stumbling blocks toward developing effective macrofilaricides to kill the adult worms is the lack of a high throughput screening method for candidate drugs. Current methods utilize systems that measure one well at a time and are time consuming and often expensive. We have developed a low-cost and simple visual imaging system to automate and quantify screening entire plates based on parasite movement. This system can be applied to the study of many macroparasites as well as other macroscopic organisms

    Systematic review of studies generating individual participant data on the efficacy of drugs for treating soil-transmitted helminthiases and the case for data-sharing

    Get PDF
    Preventive chemotherapy and transmission control (PCT) by mass drug administration is the cornerstone of the World Health Organization (WHO)’s policy to control soil-transmitted helminthiases (STHs) caused by Ascaris lumbricoides (roundworm), Trichuris trichiura (whipworm) and hookworm species (Necator americanus and Ancylostama duodenale) which affect over 1 billion people globally. Despite consensus that drug efficacies should be monitored for signs of decline that could jeopardise the effectiveness of PCT, systematic monitoring and evaluation is seldom implemented. Drug trials mostly report aggregate efficacies in groups of participants, but heterogeneities in design complicate classical meta-analyses of these data. Individual participant data (IPD) permit more detailed analysis of drug efficacies, offering increased sensitivity to identify atypical responses potentially caused by emerging drug resistance

    Mapping Helminth Co-Infection and Co-Intensity: Geostatistical Prediction in Ghana

    Get PDF
    Urinary schistosomiasis and hookworm infections cause considerable morbidity in school age children in West Africa. Severe morbidity is predominantly observed in individuals infected with both parasite types and, in particular, with heavy infections. We investigated for the first time the distribution of S. haematobium and hookworm co-infections and distribution of co-intensity of these parasites in Ghana. Bayesian geostatistical models were developed to generate a national co-infection map and national intensity maps for each parasite, using data on S. haematobium and hookworm prevalence and egg concentration (expressed as eggs per 10 mL of urine for S. haematobium and expressed as eggs per gram of faeces for hookworm), collected during a pre-intervention baseline survey in Ghana, 2008. In contrast with previous findings from the East Africa region, we found that both S. haematobium and hookworm infections are highly focal, resulting in small, localized clusters of co-infection and areas of high co-intensity. Overlaying on a single map the co-infection and the intensity of multiple parasite infections allows identification of areas where parasite environmental contamination and morbidity are at its highest, while providing an evidence base for the assessment of the progress of successive rounds of mass drug administration (MDA) in integrated parasitic disease control programs

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Assessment of the Anthelmintic Efficacy of Albendazole in School Children in Seven Countries Where Soil-Transmitted Helminths Are Endemic

    Get PDF
    Soil-transmitted helminths (roundworms, whipworms and hookworms) infect millions of children in (sub)tropical countries, resulting in malnutrition, growth stunting, intellectual retardation and cognitive deficits. Currently, there is a need to closely monitor anthelmintic drug efficacy and to develop standard operating procedures, as highlighted in a World Health Organization–World Bank meeting on “Monitoring of Drug Efficacy in Large Scale Treatment Programs for Human Helminthiasis” in Washington DC at the end of 2007. Therefore, we have evaluated the efficacy of a commonly used treatment against these parasitic infections in school children in Africa, Asia and South-America using a standardized protocol. In addition, different statistical approaches to analyzing the data were evaluated in order to develop standardized procedures for data analysis. The results demonstrate that the applied treatment was highly efficacious against round- and hookworms, but not against whipworms. However, there was large variation in efficacy across the different trials which warrants further attention. This study also provides new insights into the statistical analysis of efficacy data, which should be considered in future monitoring and evaluation studies of large scale anthelmintic treatment programs. Finally, our findings emphasize the need to update the World Health Organization recommended efficacy threshold for the treatment of STH

    A Research Agenda for Helminth Diseases of Humans: Diagnostics for Control and Elimination Programmes

    Get PDF
    Diagnostic tools appropriate for undertaking interventions to control helminth infections are key to their success. Many diagnostic tests for helminth infection have unsatisfactory performance characteristics and are not well suited for use in the parasite control programmes that are being increasingly implemented. Although the application of modern laboratory research techniques to improve diagnostics for helminth infection has resulted in some technical advances, uptake has not been uniform. Frequently, pilot or proof of concept studies of promising diagnostic technologies have not been followed by much needed product development, and in many settings diagnosis continues to rely on insensitive and unsatisfactory parasitological or serodiagnostic techniques. In contrast, PCR-based xenomonitoring of arthropod vectors, and use of parasite recombinant proteins as reagents for serodiagnostic tests, have resulted in critical advances in the control of specific helminth parasites. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, the diagnostic technologies relevant to control of helminth infections, either available or in development, are reviewed. Critical gaps are identified and opportunities to improve needed technologies are discussed
    corecore