26 research outputs found

    Design, fabrication and modelling of four-wheeled mobile robot platform with two differential and two caster wheels

    Get PDF
    This paper presents a design and modeling of wheeled mobile robot (MWR) when navigating autonomously in environment such as road and factory. It needs a good and robust design and control for wheeled mobile robot to move from one to another points with smooth moving and small tracking errors. This paper is focused on mechanical design and modeling of wheeled mobile robot. Autodesk inventor software is used to draw the design of the WMR because this software is simple to make any design and a wheeled mobile robot structure is designed with a center of gravity to be located below the axle wheels level. The wheeled mobile robot is driven using two differential drive and two castor wheels to balance robot while it is moving in the environment. Two kinds of coordinate systems are used to describe the movement of the robot in the environment; namely are Local and global coordinate system; where local is related to the heading angle and the deferential wheel shaft, however the global describes the motion in x, y and z directions. The kinematic model is derived for the four wheeled mobile robot using angular velocities equations for the left and right wheels with estimation the heading angle of the robot

    Long-term disturbance dynamics and resilience of tropical peat swamp forests

    Get PDF
    Summary 1.The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5. Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.</p

    Bordetella pertussis Infection Exacerbates Influenza Virus Infection through Pertussis Toxin-Mediated Suppression of Innate Immunity

    Get PDF
    Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers

    Extracorporeal Membrane Oxygenation for Acute Pediatric Respiratory Failure

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The use of extracorporeal membrane oxygenation (ECMO) to support children with acute respiratory failure has steadily increased over the past several decades, with major advancements having been made in the care of these children. There are, however, many controversies regarding indications for initiating ECMO in this setting and the appropriate management strategies thereafter. Broad indications for ECMO include hypoxia, hypercarbia, and severe air leak syndrome, with hypoxia being the most common. There are many disease-specific considerations when evaluating children for ECMO, but there are currently very few, if any, absolute contraindications. Venovenous rather than veno-arterial ECMO cannulation is the preferred configuration for ECMO support of acute respiratory failure due to its superior side-effect profile. The approach to lung management on ECMO is variable and should be individualized to the patient, with the main goal of reducing the risk of VILI. ECMO is a relatively rare intervention, and there are likely a minimum number of cases per year at a given center to maintain competency. Patients who have prolonged ECMO runs (i.e., greater than 21 days) are less likely to survive, though no absolute duration of ECMO that would mandate withdrawal of ECMO support can be currently recommended

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    Modeling and design of two link robotic manipulator for grading and sorting of rotationally symmetric products

    Get PDF
    This paper present a design and modeling for a two link robotic manipulator for grading and sorting system. The mechanical design calculation of the robotic manipulator is accomplished firstly to estimate the torques and positions of manipulator that are required to move a certain payloads from one to another position, which is resulted by choosing of the right electrical motors. The mechanical design drawings for this manipulator system are fully done using Autodesk Inventor Software which concerns the real joint of the robotic manipulator. The dynamic equation of the robotic manipulator system is derived using the Lagrange equation which is then represented in the state space method to make simple for utilization in Simulation and real-time systems

    Review on real-time control schemes for wheeled mobile robot

    Get PDF
    The purpose of this paper is to review real-time control motion algorithms for wheeled mobile robot (WMR) when navigating in environment such as road. Its need a good controller to avoid collision with any disturbance and maintain a track error with zero level. The controllers is used with and other aiding sensors to measure the WMR’s velocities, posture, and interference to estimate the needed torque of mobile robot due to wheel rotating. Four main categories for wheeled mobile robot control that have been found in literature which are namely: Kinematic based controller, Dynamic based controllers, artificial intelligence based control system, and Active Force control. A MATLAB/Simulink software is the main software to simulate and implement control system. The real-time toolbox in MATLAB/SIMULINK are used to receive/send data from sensors/to actuator with existing of real path disturbances

    A review on control of robotic manipulator for performing grading and sorting of rotational symmetric products

    Get PDF
    This paper presents a literature review on the common control systems that have been used for robotic manipulators with a very higher concern on PID and active force control (AFC).The control of manipulator is divided into two main systems, namely are linear and non-linear control systems. A nonlinear system is used to overcome un-modeled dynamics, variable payload, fiction and disturbance torque, variation, and noise. PID controller has enhanced the performance of the manipulator in certain cases such as reducing system vibration and maintaining the tracking errors of the manipulator. On the other hand, AFC is a robust and much viable controller in comparison with others ordinary strategies in controlling dynamical systems such as robotic manipulato
    corecore