1,927 research outputs found
Priming in the Microbial Landscape: Periphytic Algal Stimulation of Litter-Associated Microbial Decomposers
Microbial communities associated with submerged detritus in aquatic ecosystems often comprise a diverse mixture of autotrophic and heterotrophic microbes, including algae, bacteria, protozoa, and fungi. Recent studies have documented increased rates of plant litter mass loss when periphytic algae are present. We conducted laboratory and field experiments to assess potential metabolic interactions between natural autotrophic and heterotrophic microbial communities inhabiting submerged decaying plant litter of Typha angustifolia and Schoenoplectus acutus. In the field, submerged plant litter was either exposed to natural sunlight or placed under experimental canopies that manipulated light availability and growth of periphytic algae. Litter was collected and returned to the laboratory, where algal photosynthesis was manipulated (light/dark incubation), while rates of bacterial and fungal growth and productivity were simultaneously quantified. Bacteria and fungi were rapidly stimulated by exposure to light, thus establishing the potential for algal priming of microbial heterotrophic decay activities. Experimental incubations of decaying litter with 14C‐ and 13C‐bicarbonate established that inorganic C fixed by algal photosynthesis was rapidly transferred to and assimilated by heterotrophic microbial decomposers. Periphytic algal stimulation of microbial heterotrophs, especially fungal decomposers, is an important and largely unrecognized interaction within the detrital microbial landscape, which may transform our current conceptual understanding of microbial secondary production and organic matter decomposition in aquatic ecosystems
Evalution of the Efficacy of the Photosystem II Inhibitor DCMU in Periphyton and Its Effects On Nontarget Microorganisms and Extracellular Enzymatic Reactions
We examined the efficacy of the photosystem II inhibitor 3-(3,4-diclorophenyl)-1,1-dimethyl urea (DCMU) for inhibition of algal photosynthesis in periphyton associated with submerged decomposing litter of Typha angustifolia. We also investigated the possible nontarget effects of DCMU exposure on heterotrophic microorganisms (i.e., bacteria and fungi) and extracellular enzyme activity associated with decaying litter. Standing-dead Typha leaf litter was submerged for 34 and 73 d, returned to the laboratory, and used for controlled laboratory experiments that examined the effect of DCMU on algal ([14C]bicarbonate, pulse-amplitude modulated fluorometry), bacterial ([3H]leucine), and fungal ([14C]acetate) production. Simultaneous assays also were conducted to examine the effect of DCMU on the activities of 4 extracellular enzymes (β-glucosidase, β-xylosidase, leucine-aminopeptidase, and phosphatase). DCMU significantly inhibited algal photosynthesis in light-exposed periphyton (p always \u3c 0.0003), with strong inhibitory effects occurring within 5 min after exposure to DCMU. In contrast, DCMU had no significant direct effect on bacterial (p \u3e 0.5) or fungal production (p \u3e 0.3). Extracellular enzyme activities also were not significantly affected by exposure to DCMU. Heterotrophic microbial and enzyme activity assays were conducted in darkness to avoid any indirect effects of DCMU (i.e., heterotrophic responses to the inhibition of photosynthesis, rather than to DCMU itself). The apparent lack of nontarget effects of DCMU on heterotrophic microbial processes, combined with good efficacy against algal photosynthesis, suggest that DCMU may a useful selective inhibitor for investigations of interactions among litter-inhabiting microbiota
Superorbital expansion tube operation: estimates of flow conditions via numerical simulation
Two new operating conditions of the X3 superorbital expansion tube are studied experimentally and numerically. A two-stage numerical simulation is used to model the flow processes within the whole facility, from the compressed driver gas, through the initial shock-processing of the test gas and then through the unsteady expansion process to the final test flow state. Experimental measurements provide static pressure histories at particular points along the shock and acceleration tubes while the numerical simulations provide complementary information on gas density, temperature and composition. Operating condition properties such as shock speed are both observed in the experiment and produced as a result of the simulation are used to check the reliability of the numerical simulations
Phenotype standardization for statin-induced myotoxicity
Statins are widely used lipid-lowering drugs that are effective in reducing cardiovascular disease risk. Although they are generally well tolerated, they can cause muscle toxicity, which can lead to severe rhabdomyolysis. Research in this area has been hampered to some extent by the lack of standardized nomenclature and phenotypic definitions. We have used numerical and descriptive classifications and developed an algorithm to define statin-related myotoxicity phenotypes, including myalgia, myopathy, rhabdomyolysis, and necrotizing autoimmune myopathy.</p
Recommended from our members
Capturing value from big data – a taxonomy of data-driven business models used by start-up firms
The purpose of this paper is to derive a taxonomy of business models used by start-up firms that rely on data as a key resource for business, namely data-driven business models (DDBMs). By providing a framework to systematically analyse DDBMs, the study provides an introduction to DDBM as a field of study.
To develop the taxonomy of DDBMs, business model descriptions of 100 randomly chosen start-up firms were coded using a DDBM framework derived from literature, comprising six dimensions with 35 features. Subsequent application of clustering algorithms produced six different types of DDBM, validated by case studies from the study’s sample.
The taxonomy derived from the research consists of six different types of DDBM among start-ups. These types are characterised by a subset of six of nine clustering variables from the DDBM framework.
A major contribution of the paper is the designed framework, which stimulates thinking about the nature and future of DDBMs. The proposed taxonomy will help organisations to position their activities in the current DDBM landscape. Moreover, framework and taxonomy may lead to a DDBM design toolbox.
This paper develops a basis for understanding how start-ups build business models capture value from data as a key resource, adding a business perspective to the discussion of big data. By offering the scientific community a specific framework of business model features and a subsequent taxonomy, the paper provides reference points and serves as a foundation for future studies of DDBMs
Characteristics of Two-Dimensional Quantum Turbulence in a Compressible Superfluid
Under suitable forcing a fluid exhibits turbulence, with characteristics
strongly affected by the fluid's confining geometry. Here we study
two-dimensional quantum turbulence in a highly oblate Bose-Einstein condensate
in an annular trap. As a compressible quantum fluid, this system affords a rich
phenomenology, allowing coupling between vortex and acoustic energy.
Small-scale stirring generates an experimentally observed disordered vortex
distribution that evolves into large-scale flow in the form of a persistent
current. Numerical simulation of the experiment reveals additional
characteristics of two-dimensional quantum turbulence: spontaneous clustering
of same-circulation vortices, and an incompressible energy spectrum with
dependence for low wavenumbers and dependence for high
.Comment: 7 pages, 7 figures. Reference [29] updated for v
Soft X-ray harmonic comb from relativistic electron spikes
We demonstrate a new high-order harmonic generation mechanism reaching the
`water window' spectral region in experiments with multi-terawatt femtosecond
lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving
uJ/sr pulses. Harmonics are collectively emitted by an oscillating electron
spike formed at the joint of the boundaries of a cavity and bow wave created by
a relativistically self-focusing laser in underdense plasma. The spike
sharpness and stability are explained by catastrophe theory. The mechanism is
corroborated by particle-in-cell simulations
Individualization of piperacillin dosing for critically ill patients: Dosing software to optimize antimicrobial therapy
Piperacillin-tazobactam is frequently used for empirical and targeted therapy of infections in critically ill patients. Considerable pharmacokinetic (PK) variability is observed in critically ill patients. By estimating an individual's PK, dosage optimization Bayesian estimation techniques can be used to calculate the appropriate piperacillin regimen to achieve desired drug exposure targets. The aim of this study was to establish a population PK model for piperacillin in critically ill patients and then analyze the performance of the model in the dose optimization software program BestDose. Linear, with estimated creatinine clearance and weight as covariates, Michaelis-Menten (MM) and parallel linear/MM structural models were fitted to the data from 146 critically ill patients with nosocomial infection. Piperacillin concentrations measured in the first dosing interval, from each of 8 additional individuals, combined with the population model were embedded into the dose optimization software. The impact of the number of observations was assessed. Precision was assessed by (i) the predicted piperacillin dosage and by (ii) linear regression of the observed-versus-predicted piperacillin concentrations from the second 24 h of treatment. We found that a linear clearance model with creatinine clearance and weight as covariates for drug clearance and volume of distribution, respectively, best described the observed data. When there were at least two observed piperacillin concentrations, the dose optimization software predicted a mean piperacillin dosage of 4.02 g in the 8 patients administered piperacillin doses of 4.00 g. Linear regression of the observed-versus-predicted piperacillin concentrations for 8 individuals after 24 h of piperacillin dosing demonstrated an r2 of > 0.89. In conclusion, for most critically ill patients, individualized piperacillin regimens delivering a target serum piperacillin concentration is achievable. Further validation of the dosage optimization software in a clinical trial is required. Copyrigh
Optimization of double pulse pumping for Ni-like Sm x-ray lasers
We report a systematic study of double pulse pumping of the Ni-like Sm x-ray laser at 73 Angstrom, currently the shortest wavelength saturated x-ray laser. It is found that the Sm x-ray laser output can change by orders of magnitude when the intensity ratio of the pumping pulses and their relative delay are varied. Optimum pumping conditions are found and interpreted in terms of a simple model. (C) 1999 American Institute of Physics. [S0021-8979(99)07102-9]
- …