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Priming in the microbial landscape: periphytic algal stimulation
of litter-associated microbial decomposers
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2,5

1Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406 USA
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3Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487 USA

Abstract. Microbial communities associated with submerged detritus in aquatic
ecosystems often comprise a diverse mixture of autotrophic and heterotrophic microbes,
including algae, bacteria, protozoa, and fungi. Recent studies have documented increased
rates of plant litter mass loss when periphytic algae are present. We conducted laboratory
and field experiments to assess potential metabolic interactions between natural autotrophic
and heterotrophic microbial communities inhabiting submerged decaying plant litter of
Typha angustifolia and Schoenoplectus acutus. In the field, submerged plant litter was either
exposed to natural sunlight or placed under experimental canopies that manipulated light
availability and growth of periphytic algae. Litter was collected and returned to the
laboratory, where algal photosynthesis was manipulated (light/dark incubation), while rates
of bacterial and fungal growth and productivity were simultaneously quantified. Bacteria
and fungi were rapidly stimulated by exposure to light, thus establishing the potential for
algal priming of microbial heterotrophic decay activities. Experimental incubations of
decaying litter with 14C- and 13C-bicarbonate established that inorganic C fixed by algal
photosynthesis was rapidly transferred to and assimilated by heterotrophic microbial
decomposers. Periphytic algal stimulation of microbial heterotrophs, especially fungal
decomposers, is an important and largely unrecognized interaction within the detrital
microbial landscape, which may transform our current conceptual understanding of
microbial secondary production and organic matter decomposition in aquatic ecosystems.

Key words: algae; bacteria; decomposition; fungi; metabolic interactions; periphyton; photosynthesis;
plant litter; priming effect; protozoa.

INTRODUCTION

In aquatic ecosystems, decaying plant litter often

harbors a diverse community of autotrophic and

heterotrophic microorganisms, which may include spe-

cies of algae, bacteria, fungi, and protists. These

microbial communities often form complex biofilms

(Battin et al. 2007) upon the litter substrata they inhabit

(hereafter detrital periphyton complex), and in the case

of filamentous fungi and some bacteria, also grow

pervasively within the litter substratum itself. In aquatic

ecosystems exposed to sufficient light, periphytic algae

(including cyanobacteria) frequently develop on the

surfaces of decaying plant litter, where they can reach

high cell densities and biovolumes (Suberkropp and

Klug 1974, Meulemans and Roos 1985, Neely and

Wetzel 1997). As a result, algal communities associated

with the surfaces of living and dead plant matter and

mineral substrata can be a major contributor to primary

production within aquatic ecosystems (Wetzel 1990,

Goldsborough et al. 2005), and can significantly affect

the uptake and immobilization of nutrients (Mulholland

and Webster 2010).

The close spatial proximity of diverse microbial

groups on and within detrital periphyton suggests the

potential for interactions among specific microbial

inhabitants. In the absence of periphytic algae, several

researchers have experimentally demonstrated antago-

nistic interactions between litter-associated bacteria and

fungi (Wohl and McArthur 2001, Gulis and Suberkropp

2003, Mille-Lindblom and Tranvik 2003, Mille-Lind-

blom et al. 2006, Romanı́ et al. 2006, Baschien et al.

2009), whereas others have observed either positive

(Bengtsson 1992, Romanı́ et al. 2006) or neutral

interactions (Das et al. 2012). Many of these studies

were conducted within controlled laboratory micro-

cosms using only a limited number of interacting

heterotrophic microbial species. To date, few studies

have assessed interactions among naturally developed

microbial communities on decaying plant litter.

In the presence of algae, several interactions have

been observed within periphytic microbial communities.

For example, periphytic algae can provide a greater

surface area for bacterial colonization (Rier and Steven-
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son 2001, Carr et al. 2005). Furthermore, prior research

has demonstrated that rates of bacterial growth are

enhanced by algal photosynthesis in laboratory biofilm

cultures (Murray et al. 1987), natural periphyton on

both artificial and natural rock substrata (Neely and

Wetzel 1995, Scott et al. 2008), and natural floating mats

of algae and bacteria (Scott and Doyle 2006), which is

consistent with the widely established influence of

phytoplankton on pelagic bacterial growth and produc-

tion (Wetzel 2001).

More recently, several studies have reported that the

activities of heterotrophic extracellular degradative

enzymes in periphyton are rapidly increased by light

availability (Francoeur and Wetzel 2003, Francoeur et

al. 2006, Rier et al. 2007, Ylla et al. 2009). We observed

that both short-term (diel fluctuations) and long-term

(experimental shading) variation in photosynthetically

active radiation (PAR) influenced algal biomass and

heterotrophic extracellular hydrolytic and oxidative

enzyme activities in periphytic microbial communities

associated with inorganic substrata and decaying

Populus tremuloides leaf litter (see Rier et al. 2007).

Long-term experimental shading of P. tremuloides leaf

litter resulted in a twofold decrease in the litter

decomposition rate when compared to leaf litter exposed

to light, suggesting that light availability and corre-

sponding algal photosynthesis may facilitate litter decay

processes through algal-mediated stimulation of litter-

associated microbial decomposers. Similar findings have

also been reported by other researchers (Franken et al.

2005, Lagrue et al. 2011, Danger et al. 2013, but see

Albariño et al. 2008), where algal presence and/or light

availability positively influenced litter processing rates

through its impact on multiple trophic levels.

Observations of increased plant litter mass loss in the

presence of algae suggest that algal photosynthetic

activities might enhance or possibly prime microbial

carbon and nutrient mineralization processes. Well

documented in terrestrial ecosystems (Blagodatsky et

al. 2010, Kuzyakov 2010), the priming effect describes

the stimulatory influence of labile carbon additions (e.g.,

plant root exudates) on the microbially mediated

decomposition and mineralization of recalcitrant soil

organic matter. Such priming effects may also be

relevant in aquatic ecosystems (Guenet et al. 2010,

Bianchi 2011), where periphytic algal exudates within

the litter microbial landscape could stimulate the ability

of heterotrophic decomposers to process and mineralize

detrital organic matter (Danger et al. 2013).

This study was conducted to assess whether periphytic

algae influence heterotrophic microbial activities on and

within natural submerged decaying plant detritus (i.e., a

detrital periphyton biofilm complex). Throughout this

study we viewed the detrital periphyton complex as a

microbial landscape. This ecological concept, originat-

ing with Battin et al. (2007), states that biofilms are

landscapes with spatially explicit dimensions, biodiver-

sity, and ecosystem function; like other macroecological

landscapes, their composition, structure, and function

can be influenced by scale. Unlike other landscapes,
where the appropriate scales range from meters to

kilometers, critical scales for microbial landscapes can
fall within the micron to centimeter range. This concept

provides a unifying theoretical framework for testing
ecological theory at appropriate scales (Levin 1992), and

understanding its attendant consequences for critical
ecological processes ranging from carbon mineralization
and sequestration (e.g., Suberkropp et al. 2010, Clem-

mensen et al. 2013) to ecological stoichiometry and its
impacts on food web dynamics and nutrient cycling

(e.g., Hessen et al. 2004, Cross et al. 2005). In this study,
we examined whether autotrophs (algae) influenced the

growth rates of heterotrophic microbial decomposers
(fungi and bacteria) at the microbial landscape scale. In

addition, we sought to investigate whether stimulation
of heterotrophic microbial decomposers was consistent

with the production, exudation, and assimilation of
photosynthetically derived labile dissolved organic car-

bon (DOC) from co-occurring microalgal communities.

METHODS

Study site

This study was conducted in an ;18-ha freshwater
marsh located in southeast Michigan, USA (4281205800 N

8383701100 W). The study site is a created wetland
complex formed more than 20 yr ago that receives water

from the Paint Creek watershed. The study was situated
in the southeastern corner of the wetland, which is

dominated by the emergent macrophytes Typha angus-
tifolia, Schoenoplectus acutus, and Phragmites australis.

Laboratory and field procedures

We conducted both laboratory and field manipulation
experiments to examine metabolic interactions between

naturally occurring autotrophic and heterotrophic
microbial communities inhabiting submerged plant litter

of T. angustifolia and S. acutus. During the initial
experiment, overwintered standing dead leaf litter of T.

angustifolia was collected from the marsh, returned to
the laboratory, air dried, and stored at ambient lab
temperatures until used. Dried T. angustifolia leaf blades

were cut into ;16 cm long sections, placed into wire
mesh trays (see Francoeur et al. 2006), and submerged in

the marsh surface waters under natural August sunlight
conditions. Five replicate litter trays were retrieved after

10 and 29 d. Litter was carefully removed from trays,
enclosed in clean plastic containers with wetland water,

placed on ice in a cooler, and returned to the laboratory
within 30 min. In the laboratory, leaf litter from

replicate trays was sectioned into 1.7 cm long pieces
(;3.2 cm2), and the growth and production rates of

litter-associated algae (14C bicarbonate incorporation, n
¼ 3 replicate trays), bacteria ([3H]-leucine incorporation,

n¼ 5 replicate trays), and fungi (14C-acetate incorpora-
tion, n ¼ 5 replicate trays) were simultaneously

quantified from randomly selected litter pieces incubated
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under ultraviolet (UV)-free light (400 lmol�m�2�s�1
PAR) and dark conditions. In addition, randomly

selected litter pieces from replicate trays were preserved

for analysis of algal community composition and

relative abundance, and litter-associated biomass of

algae, bacteria, and fungi (n ¼ 4–5 replicate trays).

A subsequent experiment involved direct in situ

manipulation of light availability to decaying leaf litter

to test if long-term light exclusion influenced periphyton

community development (i.e., algal colonization), and

thus the potential strength of autotrophic-heterotrophic

interactions. During these experiments, standing dead

leaf litter of T. angustifolia and S. acutus was collected

from the marsh, dried, stored, and sectioned. Litter was

placed into open-top wire mesh baskets and submerged

in the marsh surface waters in August under experimen-

tal canopies that varied in light availability to decom-

posing litter.

Five replicate experimental canopies were constructed

of black Acrylite (Evonik Industries AG, Parsippany

New Jersey, USA) that excluded light (hereafter opaque

canopies), and five canopies were constructed of Acrylite

OP4, which allowed for the passage of light (PARþUV;

hereafter transparent canopies). Each canopy was tent

shaped (total area ;2 m2), consisting of two wooden 1.2

3 1.2 m frames covered with Acrylite, connected at a 908

angle, with two triangular Acrylite endpieces. Canopies

were placed in the marsh with the open bottom of the

tent just below the air–water interface. Acrylite OP4

canopies allowed the passage of 77% and 94% of

ambient UV and PAR, respectively. Black Acrylite

canopies excluded .99% of UV and PAR.

After 35 d of submergence, one litter basket from each

canopy was retrieved and immediately returned to the

laboratory. In the laboratory, leaf litter from each

replicate was sectioned into 1.7 cm long pieces (T.

angustifolia ;3.2 cm2, S. acutus ;1.7 cm2) and the

growth and production rates (n ¼ 5 replicate trays) of

algae, bacteria, and fungi were simultaneously quanti-

fied under UV-free light (400 lmol�m�2�s�1 PAR ) and

dark conditions (litter from OP4 transparent canopy

treatment only). Additional litter pieces were preserved

for the analysis of algal community composition and

relative abundance, and biomass of algae, bacteria, and

fungi (n ¼ 5 replicate trays).

Water temperatures outside and inside the canopy

treatments were continuously monitored every 30 min

throughout the entire study period using Onset Stow-

Away data loggers (Onset Computer Corp., Bourne,

Massachusetts, USA). In addition, water samples were

collected during sampling periods for determination of

pH, alkalinity, and nutrient concentrations; dissolved

inorganic nitrogen (DIN) :NO2-NO3þNH4; and total

phosphorus (TP).

Algal biomass, community composition, and production

Algal biomass associated with litter samples was

estimated from chlorophyll a concentrations. Two litter

pieces from each replicate were placed into sterile 15-mL

polypropylene conical tubes, and stored frozen (�208C,

in darkness) until analyzed. Chlorophyll a was extracted

using the hot ethanol technique, and quantified spectro-

photometrically with acidification to correct for phaeo-

pigments (Francoeur et al. 2013). Chlorophyll content

was converted to algal C assuming a conversion factor

of 30 lg chlorophyll a/mg algal C, which is approxi-

mately the midpoint of the range of algal chlorophyll : C

ratios reported by Cloern et al. (1995). Algal community

composition and relative abundance was determined

using bright field microscopy. One litter piece from each

replicate was placed in a 20-mL plastic scintillation vial

containing 5–10 mL of 2.5% (v/v) glutaraldehyde and

stored (48C) until analyzed. Algae were removed from

litter by scraping and brushing, then identified and

enumerated (4003 magnification, �100 total cells per

sample) using the taxonomy of Wehr and Sheath (2003)

for diatoms and Prescott (1973) for all other algae.

Algal primary productivity was estimated using 14C-

bicarbonate incorporation. Two litter pieces from each

replicate were placed into sterile 20-mL glass scintilla-

tion vials containing 5 mL of filtered (0.22-lm pore size)

wetland water and 0.0185 MBq H14CO3
�. Vials were

placed on their sides in a Percival E-36HO plant growth

chamber (Percival, Inc., Perry, Iowa, USA) and

incubated for 2 h at 208C under light (400 lmol�m�2�s�1
PAR, no UV) and dark conditions. Killed control

samples (n¼ 1–2 samples) containing formalin (3% v/v)

were also incubated under light and dark conditions to

correct for nonbiological 14C incorporation. Inorganic C

pools were estimated by measuring the alkalinity of

water used for incorporation assays. After incubation,

samples were killed with formalin (3% v/v final

concentration), filtered (except day 10 initial experi-

ments), and litter and filters stored frozen (�208C) until

analyzed. Samples were later acid fumed, extracted, and

radioassayed, and algal production was estimated

following protocols described in Francoeur et al. (2006).

Bacterial biomass, growth, and production

Bacterial abundance and biomass were determined by

direct count epifluorescence microscopy after staining

with SYBR Green I (Molecular Probes Inc., Eugene,

Oregon, USA; Buesing 2005), as detailed in Francoeur

et al. (2006). Two litter pieces per replicate tray were

placed in a sterile 20-mL glass scintillation vial

containing 10 mL of 2% (v/v) phosphate buffered

(sodium pyrophosphate, 0.1% w/v) formalin. Bacterial

cells were detached from litter using probe ultrasonica-

tion (1 min on ice), and subsamples (30–200 lL) were
vacuum filtered (25 mm, 0.2 lm Anodisc-supported

Whatman filters; Whatman plc, Maidstone, Kent, UK)

and stained. Bacterial cells were enumerated and

assigned into categories according to size and shape.

Biovolume estimates (V, lm3) for each size class were

calculated from length (l ) and width (w) measurements

using the formula: V ¼ w2/4 3 (l � w) 3 p þ w3/6 3 p.
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Biovolume estimates were converted to bacterial carbon

(fg C) using the formula: bacterial dry mass (fg)¼ 4353

V0.86 (Loferer-Kröbbacher et al. 1998), assuming 50% C

in bacterial dry mass.

Bacterial growth and production rates were estimated

using [3H]-leucine incorporation into bacterial protein

(Gillies et al. 2006). Two litter pieces per replicate tray

were incubated in sterile glass scintillation vials contain-

ing 4 mL of filtered (0.22-lm pore size) wetland water

and 2.5 lmol/L [4,5-3H]-leucine (specific activity of 220

GBq/mmol). Vials were placed on their sides in a plant

growth chamber and incubated for 30 min at 208C under

light and dark conditions. Killed control samples (n¼ 1–

2 samples) containing trichloroacetic acid (TCA, 5% v/

v) were also incubated to correct for nonbiological [3H]-

leucine incorporation. Incorporation of radiolabelled

leucine was stopped by the addition of TCA (5% v/v

final concentration), followed by heating samples for 30

min at 808C. Samples were then cooled, filtered, rinsed,

and radioassayed as described in Gillies et al. (2006).

Using this [3H]-leucine method, the signal : noise ratio

between samples and killed controls ranged from 5 to 9

and 4 to 5 for light and dark incubated samples,

respectively. Bacterial production was calculated as lg
bacterial C produced per g detrital C per h using the

conversion factor of 1.44 kg C produced per mole

leucine incorporated (Buesing and Marxsen 2005).

Bacterial growth rates (BGR) were calculated using

the formula: BGR ¼ ln(1þ production/biomass ratio).

Fungal biomass, growth, and production

Ergosterol concentrations (Gessner 2005) and rates of

[1-14C]-acetate incorporation into ergosterol (Suber-

kropp and Gessner 2005) were used to estimate the

biomass and growth rates, respectively, of fungal

decomposers. Two litter pieces per replicate tray were

incubated for 5 h under light and dark conditions in

sterile glass scintillation vials containing 4 mL of filtered

(0.22-lm pore size) wetland water and 5 mmol/L

Na[1-14C]-acetate (specific activity of 48 MBq/mmol).

Killed control samples containing formalin (2% v/v; n¼
1 sample) were also incubated to correct for nonbiolog-

ical 14C-acetate incorporation. Incorporation of [1-14C]-

acetate was stopped by placing vials on ice and

immediately filtering (1.2-lm pore size) the contents.

Filters and litter pieces were washed twice with filtered

(0.22-lm pore size) wetland water, and stored in glass

scintillation vials at�208C. Samples were lyophilized to

dryness, weighed, and ergosterol was extracted and

quantified by high pressure liquid chromatography

(HPLC), following the protocols described in Gessner

(2005). Ergosterol fractions eluting from the HPLC were

collected in 20-mL glass scintillation vials, mixed with 10

mL of scintillation fluid (Ecolume; MP Biomedicals,

Santa Ana, California, USA), and radioactivity assayed

using a Beckman LS6500 scintillation counter (Beckman

Coulter, Indianapolis, Indiana, USA), corrected for

quenching and radioactivity in killed controls. As some

green algae are known to contain trace amounts of

ergosterol (as a minor sterol), we conducted additional

measurements to ascertain if any of the predominant

green algal taxa in detrital periphyton samples contained

ergosterol. No ergosterol was detected in these algae.

Fungal biomass was calculated using a conversion

factor of 10 lg ergosterol/mg fungal C, assuming 43% C

in fungal dry mass. Fungal growth rates (l) were

calculated using a conversion factor of 12.6 lg fungal

biomass/nmole acetate incorporated. Fungal production

was calculated by multiplying the fungal growth rate (l)
by fungal biomass (B).

Algal carbon flow into fungal ergosterol and microbial

phospholipid fatty acids

The potential flow of algal-derived labile organic

carbon into litter-associated microbial heterotrophs was

examined by tracking the flow and incorporation of 14C-

and 13C-bicarbonate into the fungal sterol ergosterol

and microbial phospholipid fatty acids (PLFAs), re-

spectively. For 14C-bicarbonate assays, naturally occur-

ring submerged Typha detritus and its associated

periphyton (unknown age) was randomly collected from

wetland surface waters and returned to the laboratory.

In the laboratory, litter was sectioned, and randomly

selected litter pieces (two per vial) were incubated at

208C for 5 and 10 h under light conditions in sterile 20-

mL glass scintillation vials containing 4 mL of filtered

(0.22 lm pore size) wetland water and 9.25 MBq of

H14CO3
�. A total of four replicate vials and one killed

control (2% formalin v/v) per incubation time were

spiked with the photosystem inhibitor DCMU (3-[3, 4-

diclorophenyl]-1, 1-dimethyl urea, 20 lmol/L final

concentration), while another four replicate vials plus

killed control contained no DCMU. Prior studies

confirmed that DCMU halts periphytic algal photosyn-

thesis, but has no direct nontarget effects on bacterial or

fungal growth (Francoeur et al. 2007). Incorporation of
14C was stopped by placing vials on ice and immediately

filtering (1.2 lm) and washing the contents. Ergosterol

extraction and radioassay were conducted as described

for fungal biomass, growth, and production.

For 13C-bicarbonate assays, standing dead Typha leaf

litter was collected, placed into wire-mesh trays, and

submerged in the Paint Creek wetland. Typha litter and

its associated periphyton was collected after 42 d,

returned to the laboratory and sectioned. Randomly

selected litter pieces were then incubated in sterile 20

mL-glass scintillation vials (two per vial) containing 4

mL of filtered (0.22 lm) wetland water and 5 g/L of

NaH13CO3 (Sigma-Aldrich, St. Louis, Missouri, USA).

A total of four replicate vials were spiked with the

inhibitor DCMU (20 lmol/L final concentration), while

another four replicate vials contained no DCMU.

Additional control incubations were also conducted,

where two randomly selected litter pieces were incubated

in sterile 20 mL-glass scintillation vials containing only 4

mL of filtered (0.22 lm pore size) wetland water, or in
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vials containing 4 mL of filtered (0.22 lm pore size)

wetland water plus unlabelled NaHCO3 (5g/L; n ¼ 4

vials for each treatment). All vials were placed on their

sides and incubated at 208C for 7 h in light conditions.

Following incubation, the contents of each vial (litter

and any dislodged material) were filtered (0.8 lm
nitrocellulose), rinsed two times with filtered wetland

water, placed in individual plastic scintillation vials, and

stored frozen (�208C) until analysis.

Microbial PLFAs from litter samples were determined

following methods described in Findlay (2004). Frozen

Typha samples were lyophilized and total cellular lipids

were extracted using a modified (dichloromethane-

methanol-water) lipid extraction. Phospholipids were

partitioned from the total lipid pool using silicic acid

column chromatography and phospholipid fatty acids

converted to fatty acid methyl esters (FAME) by basic

methanolic transesterification. The quantities of PLFAs

were determined by analyzing FAMEs on a gas

chromatograph (GC; Agilent 6890) equipped with a 60

m DB-1 capillary column (Agilent Technologies, Santa

Clara, California, USA) and flame ionization detector.

The d13C of individual PLFAs were determined sepa-

rately by analyzing FAMEs on a GC (Agilent 6890;

using 60 m DB-1 and DB-23 capillary columns)

interfaced with a GC/CIII (ThermoFinnigan; Thermo

Fisher Scientific, West Palm Beach, Florida, USA) to an

isotope ratio mass spectrometer (IRMS; ThermoFinni-

gan Deltaþ). Previous studies have shown that there is

no isotope fractionation during transmethylation (P.

Ostrom and R. Findlay, unpublished manuscript) and

that addition of the methyl C during derivatization

(d13C of methanol used was �42.9%) decreased, on

average, d13C composition of the FAME by �0.8%.

Stable isotope ratios were measured relative to high-

purity reference gas and expressed relative to the

international Pee Dee River belemnite standard, v-

PDB, as d13C¼ [(RSAMPLE/RPDB) – 1]31000, where R is
13C/12C. The analytical precision for fatty acids with

d13C in the natural abundance range (between �32 and

�25%) was 0.5% (n¼ 11 ratios) and for those with d13C
.250% the analytical precision was 6% (n¼ 10 ratios).

Data analysis

Statistical analyses were performed using SYSTAT

software (version 13), with differences considered

significant at the P , 0.05 level. When necessary, data

were log transformed prior to analysis to reduce

heteroscedasticity. Biomass, growth, and production

data (algal, bacterial, and fungal) during each experi-

ment were analyzed using independent Student’s t tests.

Because of multicollinearity of individual PLFAs,

concentrations of microbial PLFAs among incubation

treatments (i.e., NaH13CO3, NaH13CO3 þDCMU, and

controls) were first analyzed using principal component

analysis (PCA), where data were summarized into

component factor loadings. Factor scores from the first

two principal components (corresponding to 89.3% of

total variance) were then analyzed using a MANOVA.

Isotopic signatures (d13C) of microbial PLFAs among
incubation treatments were analyzed using a one-way

ANOVA. Values and variation in the text, tables, and
figures are mean 6 SE unless otherwise noted.

RESULTS

Environmental conditions

Paint Creek wetland surface waters were slightly

alkaline (pH 7.8 6 0.1), hard water (alkalinity 166 6 21
mg CaCO3/L), and mesotrophic (DIN 244 6 87 and TP

44 6 10 lg/L) during the litter field incubations (n ¼ 4
samples). Water temperatures varied little between open

surface waters and surface waters under experimental
canopies (mean daily temperature 6 SD; open water

20.68C 6 1.58C, OP4 transparent canopy 22.38C 6

2.98C, opaque canopy 21.38C 6 2.98C).

Initial laboratory experiments

During in situ incubation within the marsh, T.

angustifolia litter was rapidly colonized by periphytic
algae under natural sunlight conditions. Algal biomass

increased, although not significantly (P¼ 0.16), between
the two collection dates (Table 1). Algal communities

inhabiting decaying Typha litter were similar on both
collection dates, and were dominated by cyanobacteria

and diatom assemblages (Table 2). As expected, short-
term, laboratory production assays of litter-associated

algae (14C-bicarbonate incorporation) were significantly
(P , 0.001) influenced by incubation in the light vs.

dark, with litter samples having negligible rates of algal
production when samples were incubated in the dark

(Fig. 1).
Light availability also significantly (P , 0.05)

influenced the short-term growth and production rates
of litter-associated bacterial and fungal decomposers.

When collected litter samples were incubated under
lighted conditions, growth rates (l) of bacteria ([3H]-

leucine incorporation) and fungi (14C-acetate incorpo-
ration) were ;60% and 66–138% higher, respectively,
compared to corresponding samples that were incubated

in the dark (Fig. 2A, B). Production rates of litter-
associated bacteria and fungi followed a similar pattern

(data not shown), with rates being ;61% and 76–123%
higher when incubated in the light, respectively. No

significant differences in litter-associated bacterial (P ¼
0.65) or fungal biomass (P ¼ 0.92) were observed

between the two collection dates (Table 1). Fungal
biomass was .20 times greater than corresponding

bacterial biomass, accounting for �95% of total
heterotrophic microbial biomass.

Field manipulation experiments

Field manipulation of light had a major impact on the
development patterns of detrital periphyton communi-
ties. As expected, algal biomass on decaying T.

angustifolia and S. acutus litter decreased significantly
(P , 0.01) when litter was submerged under shaded
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conditions (Table 1). Visual examination of shaded litter

samples (day 35) revealed very few attached algae (data

not shown), indicating that the opaque canopies greatly

reduced algal presence. In contrast, periphytic algae

rapidly colonized submerged T. angustifolia and S.

acutus litter under light transparent canopies, with algal

biomass concentrations similar to those observed earlier

on T. angustifolia litter exposed to natural sunlight

conditions (Table 1). Algal communities inhabiting T.

angustifolia and S. acutus litter under transparent

canopies displayed some differences, with diatoms

dominating on Typha litter and cyanobacteria dominat-

ing on Schoenoplectus litter (Table 2). These field

treatments produced two detrital periphyton complexes;

þalgae (transparent canopies) and �algae (opaque

canopies).

Consistent with patterns of algal colonization, rates of

algal production on decaying plant litter were also

significantly influenced (P , 0.001) by canopy treat-

ment. Algal productivity in short-term laboratory

production assays was .10 times higher on T. angus-

tifolia and S. acutus litter collected from transparent

canopies (þalgae) compared to litter collected from

opaque canopies (�algae; Fig. 3A, B). Likewise, when

decaying T. angustifolia and S. acutus litter from

transparent canopies (þalgae) was assayed under dark

laboratory conditions, rates of algal production de-

creased significantly (P , 0.001).

Plant litter incubated under transparent and opaque

canopies displayed mixed effects on the short-term

growth and production rates of bacteria and fungi.

Bacterial growth and production assays conducted

under constant light exposure revealed no significant

differences in bacterial growth (Fig. 4A, B) or produc-

tion rates (data not shown) between canopy treatments,

suggesting that litter-associated bacteria grew equally

well in the presence or absence of algae. However, when

litter from transparent canopies (þalgae) was assayed

under both light and dark conditions, rates of bacterial

growth (Typha only; Fig. 4A) and production (data not

shown) increased significantly (P , 0.05) when litter was

incubated in light, implying that bacterial activity was

influenced by algal photosynthetic activity when algae

were present. No significant difference in bacterial

biomass was observed on T. angustifolia (P ¼ 0.27) or

S. acutus (P ¼ 0.19) litter incubated under the different

canopy treatments (Table 1).

In contrast to bacteria, fungi exhibited a more

pronounced response to canopy treatments, with litter

from transparent (þalgae) canopies supporting signifi-

cantly (P , 0.05) higher rates of fungal growth than

litter from opaque (�algae) canopies (Fig. 4C, D).

Fungal growth rates associated with T. angustifolia

TABLE 2. Mean relative abundance (percentage of cells) of algal divisions associated with decaying T. angustifolia and S. acutus
leaf litter under natural conditions, and under field manipulation experiments using transparent (PARþUV) canopies.

Experiment and species Day Heterokontophyta (%) Chlorophyta (%) Cyanophyta (%) Other (%)

Natural decay (full light)

T. angustifolia 10 29.4 6 4.2 17.2 6 2.6 53.0 6 2.8 0.4 6 0.3
T. angustifolia 29 43.7 6 4.2 17.1 6 4.9 38.7 6 5.7 0.4 6 0.2

Field manipulation (transparent canopies)

T. angustifolia 35 46.9 6 14.4 24.3 6 16.6 25.5 6 3.3 3.3 6 1.2
S. acutus 35 9.1 6 20.8 26.9 6 16.8 63.2 6 33.3 0.5 6 2.0

Note: Values are mean and SE (n ¼ 5 samples), except S. acutus (n ¼ 3, due to lost samples).

TABLE 1. Biomass of microbial communities associated with decaying Typha angustifolia and Schoenoplectus acutus leaf litter
under natural conditions, and under field manipulation experiments using opaque (dark) and transparent (photosynthetically
active radiation [PAR] þ ultraviolet [UV]) canopies.

Experiment and species Day
Algal biomass

(mg C/g detrital C)
Bacterial biomass
(mg C/g detrital C)

Fungal biomass
(mg C/g detrital C)

Natural decay (full light)

T. angustifolia 10 6.3 6 1.1 1.8 6 0.3 37.9 6 3.0
29 8.6 6 0.9 1.9 6 0.2 38.3 6 3.6

Field manipulation (canopies)

Transparent
T. angustifolia 35 5.0a 6 0.9 1.7 6 0.1 21.7 6 2.5
S. acutus 35 6.4a 6 1.8 1.2 6 0.9 38.6 6 4.0

Opaque

T. angustifolia 35 1.2b 6 0.3 1.3 6 0.3 30.4 6 8.8
S. acutus 35 1.0b 6 0.4 1.0 6 0.1 49.3 6 5.8

Notes: Values are the mean and SE (n¼ 5 samples; occasionally 4 due to lost samples). Values with different superscript letters
within a species indicate significant differences (P , 0.01).
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and S. acutus litter were ;114% and 40% higher,

respectively, when algae were present. Corresponding

rates of fungal production followed a similar pattern

(data not shown).

A more striking response in fungal growth and

production was observed when T. angustifolia and S.

acutus litter incubated under transparent canopies (þ
algae) was assayed under both light and dark conditions.

Similar to bacteria, rates of fungal growth (Fig. 4C, D)

and production (data not shown) were significantly

greater (P , 0.01) when litter samples were incubated in

the light, providing additional evidence that when

present, algae and their photosynthetic activities can

influence fungal activities within decaying plant litter.

Algal labile carbon transfer to microbial heterotrophs

Short-term, laboratory experimental incubations of

natural decaying T. angustifolia litter with 14C-bicar-

bonate established that 14C was transferred to and

incorporated by fungal decomposers. This was most

FIG. 2. Growth rates of (A) bacteria (as measured by [3H]-
leucine incorporation) and (B) fungi (as measured by 14C-
acetate incorporation) in natural T. angustifolia detrital
periphyton incubated in the laboratory for 30 min in light
(400 lmol�m�2�s�1 PAR, UV free) or dark. T. angustifolia
detrital periphyton was collected 10 and 29 d after litter
submergence. Values are meansþ SE (n¼ 5 samples). Asterisks
indicate significant differences between light and dark incubat-
ed samples.

** P , 0.01.

FIG. 1. Rates of periphytic algal production (as measured
by 14C-bicarbonate incorporation) in natural Typha angusti-
folia detrital periphyton incubated in the laboratory for 2 h in
light (400 lmol�m�2�s�1 photosynthetically active radiation
[PAR], ultraviolet [UV] free) or dark. T. angustifolia detrital
periphyton was collected 10 and 29 d after litter submergence.
Values are means þ SE (n ¼ 3 samples). Asterisks indicate
significant differences between light and dark incubated
samples (P , 0.001).

*** P , 0.001.

FIG. 3. Rates of periphytic algal production (14C-bicarbon-
ate incorporation) in (A) natural T. angustifolia and (B)
Schoenoplectus acutus detrital periphyton incubated in the
laboratory for 2 h in light (400 lmol�m�2�s�1 PAR, UV free) or
dark. Litter was collected 35 d after submergence under opaque
or transparent canopies. Values are meansþSE (n¼5 samples).
Different letters above the plotted bar indicate significant
differences between light and dark incubated samples (P ,
0.001).
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likely driven by photosynthesis and labile dissolved

organic carbon (DOC) exudation from co-occurring

periphytic algae within the microbial landscape. Assim-

ilation of 14C into fungal biomass (ergosterol) was

significantly (P , 0.001) reduced in light-incubated litter

samples exposed to the photosynthesis inhibitor DCMU

(Fig. 5).

Similar patterns were also observed when Typha litter

samples were incubated with 13C-bicarbonate. Signifi-

cantly greater amounts of 13C were detected in microbial

PLFAs (F3,11 ¼ 36.12–798.82 [range], P , 0.0001,

ANOVA) when Typha litter samples were incubated

with 13C-bicarbonate in the light vs. corresponding litter

samples that were incubated in the light with 13C-

bicarbonate and DCMU (Figs. 6 and 7). As expected,

assimilation of 13C was observed in PLFAs that are

commonly associated with phototrophic microeukary-

otes (Fig. 6, Table 3). However, assimilation of 13C was

also noted in PLFAs that are only found in heterotro-

phic microbes (e.g., bacteria and protozoa; Figs. 6 and 7,

Table 3), providing additional support for utilization of

labile algal exudates by litter microbial heterotrophs.

Total PLFAs concentrations among experimental treat-

ments were not significantly different (Wilks’ lambda

F2,13¼ 0.058, P¼ 0.94, MANOVA), ranging from 655 6

45 to 802 6 102 ng PLFA/mg detrital C (Table 3).

FIG. 4. (A and B) Bacterial and (C and D) fungal growth rates of (A and C) T. angustifolia and (B and D) S. acutus detrital
periphyton complexes, respectively, incubated in the laboratory for 30 min in light (400 lmol�m�2�s�1 PAR, UV free) or dark
(transparent canopies only). Litter was collected 35 d after submergence under opaque or transparent canopies. Values are meansþ
SE (n ¼ 5 samples). Different letters above the plotted bar indicate significant differences (P , 0.05).

FIG. 5. Carbon source tracking experiment showing the
transfer and incorporation of 14C into fungal ergosterol, as
disintegrations per minute (DPM), during 5 and 10 h
experimental light (400 lmol�m�2�s�1 PAR, UV free) incuba-
tions of natural T. angustifolia detrital periphyton with 14C-
bicarbonate. Incubations were conducted in the presence and
absence of the photosynthesis inhibitor DCMU (3-[3, 4-
diclorophenyl]-1, 1-dimethyl urea, 20 lmol/L final concentra-
tion). Values are meansþ SE (n¼ 4 samples). Asterisks indicate
significant differences between light and dark incubated
samples at each sampling period.

*** P , 0.001.
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DISCUSSION

Plant litter decomposition is a key ecosystem process

in aquatic and terrestrial habitats (Hagen et al. 2012),

which has been examined as a function of numerous

physical, chemical, and biological factors (Graça et al.

2005). Light-mediated decomposition of both dissolved

and particulate organic matter (photodegradation) is

widely accepted as an important abiotic process (King et

al. 2012), and a potential mechanism for stimulating

microbial heterotrophic activities. Photolysis of recalci-

trant dissolved organic matter (DOM) can lead to the

production of organic molecules that are more readily

assimilated by heterotrophic microorganisms (Wetzel et

al. 1995, Paul et al. 2012). In contrast, light-mediated

biotic decomposition processes via algal stimulation of

litter-associated microbial heterotrophs have only re-

cently been identified (Neely 1994, Neely and Wetzel

1997, Francoeur et al. 2006, Rier et al. 2007, Danger et

al. 2013), yet the underlying stimulatory mechanism(s)

and its overall significance for carbon and nutrient

cycling in aquatic ecosystems remain poorly understood.

Results obtained in this investigation provide com-

pelling evidence that periphytic algae can stimulate the

heterotrophic activity of bacteria and fungi within the

litter microbial landscape. We consistently demonstrated

significant short-term light-based metabolic stimulation

of bacterial and fungal growth and production within

detrital periphyton communities. In the presence of

algae, growth and production rates of bacteria and fungi

increased rapidly (.60%) when detrital periphyton

complexes were assayed under light vs. dark conditions.

These findings are ecologically intriguing and significant,

since they demonstrate a largely unrecognized role of

autochthonous primary producers within detritus-based

aquatic ecosystems that are typically viewed as being

driven by heterotrophic processes. To our knowledge,

this study is the first report of light-mediated stimulation

of fungi. This novel phenomenon underscores the

potential importance of photoautotrophic-heterotrophic

interactions to ecosystem-level decomposition and nu-

FIG. 6. The d13C of widely distributed and microeukary-
otic-specific PLFAs (phospholipid fatty acids) following 7 h
light (400 lmol�m�2�s�1 PAR, UV free) incubations of natural
T. angustifolia detrital periphyton with (A) wetland water
containing 13C-bicarbonate, (B) wetland water containing 13C-
bicarbonate and the photosynthesis inhibitor DCMU, (C)
wetland water only, or (D) wetland water and non-labeled
bicarbonate. Values are means and SE (n ¼ 4 samples).
Asterisks indicate a significant difference between the incuba-
tion treatments for each individual PLFA.

*** P , 0.001.

FIG. 7. The d13C of bacterial-specific PLFAs following 7 h
light (400 lmol�m�2�s�1 PAR, UV free) incubations of natural
T. angustifolia detrital periphyton. Treatments are as in Fig. 6.
Values are means and SE (n ¼ 4 samples). Asterisks indicate a
significant difference between incubation treatments for each
individual PLFA.

*** P , 0.001.
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trient cycling, as fungal decomposers play a key role in

litter decomposition in aquatic systems (Gulis et al.

2009).

Our observations of light-mediated interactions

among detrital-inhabiting microbial photoautotrophs

and heterotrophs are consistent with prior research

examining periphytic microbial communities colonizing

inert substrata (Neely and Wetzel 1995, Scott et al.

2008). Neely and Wetzel (1995) used a dual-isotopic

radiolabeling assay to simultaneously quantify rates of

algal and bacterial productivity in natural periphyton

communities colonizing glass coverslips. In their study,

rates of algal and bacterial production were positively

correlated over a range of PAR flux densities (20 to 400

lmolm�2�s�1). When exposed to 400 lmol�m�2�s�1 PAR,

rates of periphytic bacterial production increased by

;62% in comparison to bacteria exposed to low light

levels (20 lmol�m�2�s�1 PAR). In addition, when the

photosynthesis inhibitor DCMU was applied to periph-

yton communities, algal photosynthetic rates declined to

negligible levels and bacterial production decreased

concomitantly by ;46% over all light intensities. Scott

and Doyle (2006) observed similar autotrophic-hetero-

trophic interactions in floating periphyton mats, where

rates of heterotrophic bacterial production were posi-

tively correlated with rates of algal photosynthesis.

Collectively, the results obtained in prior studies and the

present investigation suggests that light-mediated algal

stimulation of microbial heterotrophs may be a wide-

spread phenomenon on a variety of submerged substra-

ta.

Increased availability of labile DOC is among the

several mechanisms that could drive the light-mediated

interactions in the detrital periphyton complex. Peri-

phytic communities are net sinks for DOC (Romanı́ et

al. 2004), and prior studies have documented that

heterotrophic bacterial growth (Bernhardt and Likens

2002) and production (Sobczak 1996) in periphyton are

stimulated by labile organic C amendments. The

production and exudation of labile DOC from peri-

phytic algae has been well documented (Jones and

Cannon 1986, Ziegler et al. 2009), and likely constitutes

a source of labile DOC for microbial heterotrophs

within the detrital periphyton complex. In the present

study, carbon source tracking experiments using 14C and
13C confirmed that inorganic C was transferred to and

incorporated by microbial heterotrophs (bacteria, fungi,

and protozoa). This process was inhibited by DCMU,

which indicates that algal photosynthetic C fixation and

labile DOC exudation were critical intermediate steps.

These findings concur with other recent tracer studies

that have demonstrated that periphytic microbial

heterotrophs readily take up and assimilate algal-derived

DOC (Ziegler et al. 2009, Ziegler and Lyon 2010, Risse-

Buhl et al. 2012), and add further support to the

hypothesis that the production and exudation of labile

DOC by periphytic algae may be an important factor in

stimulating heterotrophic microbial activities in detrital

periphyton communities.

TABLE 3. Concentrations of major phospholipid fatty acids (PLFAs; measured as ng PLFA/mg detrital C) extracted from T.
angustifolia detrital periphyton samples.

PLFA Functional group assignment

Treatment

13C 13C þ DCMU Control A Control B

i14:0 B 4.7 6 1.1 4.2 6 0.6 4.8 6 0.5 4.6 6 0.4
14:0 WD; B, MU 20.7 6 3.4 17.5 6 1.3 18.5 6 2.2 21.7 6 2.6
i15:0 B 25.6 6 5.2 22.9 6 2.7 27.1 6 2.1 26.1 6 2.7
a15:0 B 6.5 6 1.1 6.3 6 0.7 7.7 6 1.0 7.0 6 0.8
15:0 WD; B, MU 5.2 6 0.9 4.8 6 0.5 6.0 6 0.6 4.7 6 0.6
16:0 WD; B, MU 172.0 6 20.3 140.6 6 7.1 160.9 6 7.7 163.3 6 22.3
i16:0 B 7.5 6 0.9 6.5 6 0.2 6.6 6 0.3 6.8 6 0.6
16:1w7c WD; B, MU 88.3 6 11.6 74.1 6 4.9 88.4 6 7.3 78.8 6 4.6
16:1w7t B 10.2 6 1.3 8.7 6 0.7 10.1 6 0.7 9.1 6 0.9
16:1w5c B 32.6 6 4.7 28.9 6 3.0 35.3 6 2.7 30.7 6 1.3
18:0 WD; B, MU 44.2 6 6.9 34.9 6 4.1 50.5 6 8.0 43.3 6 12.5
18:1w7c B, HU 94.3 6 11.0 83.7 6 7.6 89.7 6 6.0 89.8 6 11.5
18:1w7t B 16.7 6 2.4 12.1 6 1.4 15.9 6 2.0 14.7 6 4.9
18:1w9 WD; B, MU 51.7 6 7.4 40.5 6 3.4 52.7 6 8.6 48.6 6 12.3
18:2w6 WD; B (cyanobacteria), MU 88.9 6 9.4 60.3 6 5.1 92.6 6 9.2 80.8 6 15.9
18:3w3 MU (green algae, fungi) 25.3 6 3.4 20.9 6 1.6 24.2 6 4.7 24.4 6 4.2
20:4w6 MU (predominately HU protozoa) 9.1 6 2.0 7.3 6 0.8 9.6 6 2.4 10.1 6 2.2
20:5w3 MU (predominately PU diatoms) 12.3 6 3.6 9.9 6 2.1 15.1 6 5.4 12.1 6 2.8
Other minor fatty acids

(combined total)
86.4 6 11.5 70.7 6 4.9 85.8 6 6.2 77.6 6 8.2

Total 802.4 6 101.7 655.1 6 44.9 802.2 6 62.2 754.3 6 101.7

Notes: Functional groups WD (widely distributed), B (bacteria), MU (microeukaryotes), HU (heterotrophic microeukaryotes),
and PU (phototrophic microeukaryotes) are from Findlay (2004), as appropriate for aquatic environments. Values are mean and
SE (n ¼ 4 samples). Experimental treatments included samples incubated in wetland water containing 13C-bicarbonate (13C),
wetland water containing 13C-bicarbonate and the photosynthesis inhibitor DCMU (13CþDCMU), wetland water only (Control
A), and wetland water containing non-labeled bicarbonate (Control B).
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Alternatively, photolysis of both dissolved and

particulate organic matter is a well known abiotic

decomposition process (King et al. 2012), which can

lead to the production of DOC more readily utilized by

heterotrophic microorganisms (Wetzel et al. 1995, but

see Tranvik and Bertilsson 2001). However, a recent

study has indicated that most DOC mineralization in

lake waters could be explained by microbial activity

independent of any DOC photolysis (Koehler et al.

2012). UV light is thought to initiate the majority of

DOM photolysis; however, UV light was not present in

any of our laboratory assay incubations. Taken togeth-

er, this suggests that our observed simulation of

heterotrophic microbial activity was not driven by

DOC photolytic mechanisms.

In addition to increased DOC availability, other

potential mechanisms stimulating heterotrophic micro-

bial metabolism within detrital periphyton may result

from photosynthetic alteration of the detrital milieu.

Empirical evidence exists for rapid increases of extra-

cellular hydrolytic and oxidative enzyme activities in

periphytic communities exposed to light (Espeland et al.

2001, Francoeur et al. 2006, Rier et al. 2007, Ylla et al.

2009), which likely result from photosynthetically

mediated shifts in pH. Algal photosynthesis can rapidly

increase the pH within periphytic microbial communities

from ,7 to .9 (Revsbech et al. 1983, Espeland et al.

2001), which is the optimum pH for many periphytic

degradative enzymes (Espeland et al. 2001, Francoeur

and Wetzel 2003). Rier et al. (2007) reported increased

extracellular hydrolytic and oxidative enzyme activities

in natural decaying P. tremuloides leaf litter exposed to

light vs. dark conditions within experimental stream

mesocosms. These enzymes were likely produced by

microbial heterotrophs, particularly fungi (Romanı́ et al.

2006), and their increased activity implies accelerated

rates of microbial carbon and nutrient acquisition from

decaying litter.

The instantaneous light-mediated stimulation of, and

labile algal carbon flow to, microbial heterotrophs

within detrital periphyton strengthens the contention

that periphytic algae may be eliciting a priming effect

(PE) on the decay activities of litter-associated microbial

decomposers (Danger et al. 2013). Well established in

terrestrial soils, the PE describes the natural phenome-

non where the mineralization rate of recalcitrant soil

organic matter is enhanced by pulsed or continuous

inputs of labile carbon (Blagodatsky et al. 2010,

Kuzyakov 2010). In this regard, labile carbon inputs

produce hotspots and hot moments of microbial activity

(e.g., in the rhizosphere), where heterotrophic microbial

decomposers are provided energy-rich compounds that

aid in their metabolic capabilities (e.g., enzyme produc-

tion) to degrade and mineralize more refractory soil

organic matter. As in terrestrial ecosystems, both fungi

and bacteria play a fundamental role in the breakdown

and mineralization of organic matter in aquatic habitats,

and their ability to process and assimilate organic matter

is intimately coupled with and influenced by their

metabolic activities (e.g., growth, enzyme production,

and respiration).

Prior studies have demonstrated that algal presence

and/or light availability can accelerate rates of plant

litter decomposition (Franken et al. 2005, Rier et al.

2007, Lagrue et al. 2011, Danger et al. 2013). Franken et

al. (2005) examined the effect of light intensity on the

decomposition of poplar leaves (Populus nigra) in the

presence or absence of the invertebrate shredders Asellus

aquaticus and Gammarus pulex. In the absence of

invertebrates, a significant relationship was observed

between leaf mass loss and algal abundance at the

different light intensities. At the time, the authors

speculated that algal exudates may have promoted the

increased growth of fungi and bacteria, which in turn

facilitated increased microbial decay of poplar leaf

material. Similar findings have been recently reported

by Danger et al. (2013), where they observed that

periphytic algae (diatoms), in combination with hetero-

trophic microbial decomposers (fungi and bacteria),

significantly stimulated the decomposition of alder

(Alnus glutinosa) leaf litter. Although we did not

quantify rates of plant litter mass loss in the present

study, our observations of light-based stimulation of,

and labile algal carbon flow to, fungal and bacterial

decomposers in detrital periphyton, in combination with

previous studies demonstrating increased light-based

stimulation of decomposition strongly supports the

likelihood of an algal-mediated PE in the detrital

microbial landscape.

Recently, Guenet et al. (2010) reviewed three theoret-

ical mechanisms that could explain the PE phenomenon,

all of which centered on microbial interactions between

labile organic matter (LOM) and recalcitrant organic

matter (ROM) decomposers. Three competing mecha-

nistic hypotheses were proposed: (1) LOM degrading

enzymes produced by LOM decomposers will also

degrade ROM, which in turn stimulates ROM decom-

posers but not LOM decomposers (i.e., co-metabolism),

(2) LOM degradation by LOM decomposers supplies

energy-rich compounds to the ROM decomposers, thus

allowing ROM decomposers to produce ROM-degrad-

ing enzymes, which accelerates decay and nutrient

release for both ROM and LOM decomposers, and (3)

a single decomposer population produces enzymes able

to degrade both LOM and ROM, and increased LOM

availability and degradation provides energy for the

synthesis of ROM-degrading enzymes. Given the

difference in enzymes needed to degrade algal exudates

(e.g., alpha glucosidase for starches, while no extracel-

lular enzymes are required for monomeric sugars)

compared to cellulose and lignin in plant litter (e.g.,

cellobiose oxidase, phenol oxidase, laccase, peroxidase,

see Eriksson 1984), mechanistic hypothesis 1 does not

seem likely in detrital periphyton communities. Mech-

anistic hypotheses 2 and 3 are plausible; however, testing

and differentiating between these two theoretical mech-
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anisms would require a much greater detailed species-

level investigation. A novel fourth mechanism poten-

tially explaining stimulation in detrital periphyton

communities may also involve a combination of LOM

inputs (algal photosynthate) and corresponding photo-

synthetic alteration of the detrital milieu. As mentioned

earlier, it is well established that photosynthetic activity

in periphyton communities can rapidly alter pH and

oxygen availability (e.g., Revsbech et al. 1983), which

can stimulate the activities of extracellular degradative

enzymes (e.g., Espeland et al. 2001, Francoeur and

Wetzel 2003). As a consequence, changes in environ-

mental conditions engendered by algal photosynthetic

activities may by themselves facilitate increased enzy-

matic activity, leading to increased LOM availability

and a subsequent PE on the ROM-decomposer com-

munity. This mechanistic aspect was not examined in the

present study, but does represent an area that holds

promise for future research.

Guenet et al. (2010) also outlined a series of

unanswered questions concerning the similarity and

differences in PE between terrestrial and aquatic

environments, and specific aspects of the PE in aquatic

habitats. While emergent marsh plant detritus is

intermediate along a ROM–LOM continuum, increased

decomposition stimulated by algal exudates is clearly an

example of PE within a freshwater habitat, and adds to

the examples of LOM simulating ROM decomposition

in aquatic ecosystems. Interpreted within the microbial

landscape concept, the detrital periphyton complex

serves, to the best of our knowledge, as the first example

demonstrating both hotspots and hot moments of PE in

aquatic systems. Each complex, once an active algal

community is established, becomes a unique microbial

landscape element in which the PE can stimulate

microbially mediated litter decomposition. As the effect

is dependent upon sunlight, each day when PAR is

present becomes a hot moment for PE-stimulated litter

decomposition. We have speculated that (and are

looking forward to testing whether) algal exudates also

stimulate decomposition of refractory components of

DOM present in these systems.

The microbial diversity within the detrital periphyton

complex likely serves to stimulate energy mobilization

through the detrital food web. Microbes have favorable

elemental stoichiometry relative to detritus, have the

potential to provide essential nutrients (fatty acids,

vitamins, etc.), and serve as the primary food resource

for the detritus-feeding consumers (e.g., invertebrates)

that dominate in these systems. Our study, combined

with the findings of Danger et al. (2013), provides a basis

upon which to compare the PE phenomenon in

terrestrial and freshwater environments and its overall

impact on ecological processes.

In summary, this study significantly extends our

understanding of periphytic microbial interactions

beyond previously reported algal-bacterial couplings

on inert substrata. The evidence that fungi respond to

algal metabolism, and perhaps more importantly, that

periphytic algae function as a photosynthetic conduit for
labile carbon supply to microbial heterotrophs over very

short time intervals, are important advances for
understanding the functional role of both fungi and
bacteria in carbon cycling processes. Given the ubiqui-

tous nature of periphytic biofilms in any damp habitat,
our results highlight the need for more sophisticated

studies to discern the details of metabolic couplings
within litter-associated microbial communities and their

potential impact on ecosystem carbon flow and nutrient
cycling pathways.
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Graça, M. A. S., F. Bärlocher, and M. O. Gessner. 2005.
Methods to study litter decomposition. Springer, Dordrecht,
The Netherlands.

Guenet, B., M. Danger, L. Abbadie, and G. Lacroix. 2010.
Priming effect: bridging the gap between terrestrial and
aquatic ecology. Ecology 91:2850–2861.

Gulis, V., K. A. Kuehn, and K. Suberkropp. 2009. Fungi. Pages
233–243 in G. E. Likens, editor. Encyclopedia of inland
waters. Volume 3. Elsevier, Oxford, UK.

Gulis, V., and K. Suberkropp. 2003. Interactions between
stream fungi and bacteria associated with decomposing leaf
litter at different levels of nutrient availability. Aquatic
Microbial Ecology 30:149–157.

Hagen, E. M., K. E. McCluney, K. A. Wyant, C. U. Soykan,
A. C. Keller, K. C. Luttermoser, E. J. Holmes, J. C. Moore,
and J. L. Sabo. 2012. A meta-analysis of the effects of
detritus on primary producers and consumers in marine,
freshwater, and terrestrial ecosystems. Oikos 121:1507–1515.
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