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Evaluation of the efficacy of the photosystem II inhibitor DCMU in
periphyton and its effects on nontarget microorganisms and

extracellular enzymatic reactions

Steven N. Francoeur1, Audrey C. Johnson2, Kevin A. Kuehn3,
AND Robert K. Neely4

Center for Aquatic Microbial Ecology, Department of Biology, Eastern Michigan University,
Ypsilanti, Michigan 48197 USA

Abstract. We examined the efficacy of the photosystem II inhibitor 3-(3,4-diclorophenyl)-1,1-dimethyl urea
(DCMU) for inhibition of algal photosynthesis in periphyton associated with submerged decomposing litter
of Typha angustifolia. We also investigated the possible nontarget effects of DCMU exposure on heterotrophic
microorganisms (i.e., bacteria and fungi) and extracellular enzyme activity associated with decaying litter.
Standing-dead Typha leaf litter was submerged for 34 and 73 d, returned to the laboratory, and used for
controlled laboratory experiments that examined the effect of DCMU on algal ([14C]bicarbonate, pulse-
amplitude modulated fluorometry), bacterial ([3H]leucine), and fungal ([14C]acetate) production. Simulta-
neous assays also were conducted to examine the effect of DCMU on the activities of 4 extracellular enzymes
(b-glucosidase, b-xylosidase, leucine-aminopeptidase, and phosphatase). DCMU significantly inhibited algal
photosynthesis in light-exposed periphyton (p always , 0.0003), with strong inhibitory effects occurring
within 5 min after exposure to DCMU. In contrast, DCMU had no significant direct effect on bacterial (p .

0.5) or fungal production (p . 0.3). Extracellular enzyme activities also were not significantly affected by
exposure to DCMU. Heterotrophic microbial and enzyme activity assays were conducted in darkness to
avoid any indirect effects of DCMU (i.e., heterotrophic responses to the inhibition of photosynthesis, rather
than to DCMU itself). The apparent lack of nontarget effects of DCMU on heterotrophic microbial processes,
combined with good efficacy against algal photosynthesis, suggest that DCMU may a useful selective
inhibitor for investigations of interactions among litter-inhabiting microbiota.

Key words: wetlands, photosynthesis, production, algae, fungi, bacteria, extracellular enzymes.

Periphyton is the assemblage of microorganisms
(i.e., algae, bacteria, fungi, protists) that colonize and
grow on surfaces within aquatic ecosystems (Wetzel
2001). These communities often form thick biofilms on
substrata, and in the case of fungal organisms
colonizing detritus, also grow endogenously (i.e.,
hyphal penetration) within the substratum itself. In
aquatic ecosystems exposed to sunlight, the photosyn-
thetic activities of periphytic algae often can contribute
a substantial portion of the ecosystem’s net primary
production, and much of this primary production can

be passed to higher trophic levels (e.g., Stevenson
1996, Wetzel 2001). Heterotrophic microbial assem-
blages, particularly those communities growing upon
and within plant litter, also might support the
nutritional requirements of consumers, thus forming
another link to higher trophic levels of aquatic food
webs (e.g., Cummins 1974, Bärlocher 1985, Graça et al.
1993, Hall and Meyer 1998). In addition, as a result of
both intense nutrient uptake and substantial nutrient
mineralization and release, periphyton communities
can strongly influence nutrient cycling in aquatic
ecosystems by acting as either a nutrient source or
sink (Mulholland 1996, Wetzel 1996, 2001). As a
consequence, periphyton communities play an impor-
tant role in the functioning of aquatic ecosystems.

Periphytic microbiota interact with one another. For
example, heterotrophic microbes (i.e., bacteria) and
extracellular enzyme activity within periphyton can be
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strongly affected by algal photosynthesis (Murray et al.
1986, Neely and Wetzel 1995, Espeland et al. 2001,
Francoeur and Wetzel 2003, Francoeur et al. 2006). Algal
photosynthesis can stimulate nitrification in periphyton
(Lorenzen et al. 1998, An and Joyce 2001, Kemp and
Dodds 2001), but it is inhibitory to periphytic bacterial
and cyanobacterial N2 fixation (Bebout et al. 1987, 1993,
Paerl et al. 1996) and bacterial denitrification (Chris-
tensen et al. 1990, Nielsen et al. 1990).

Previous studies assessing the interactions among
microbes (e.g., DeLorenzo et al. 2001), or participation
of specific microbial groups in ecological processes
(Mason 1976, Padgett et al. 1985, Hackney et al. 2000)
in natural periphytic or detrital samples often have
used selective inhibitors to disrupt the growth of
certain microbial groups (e.g., bacteria or fungi).
Various broad-spectrum growth inhibitors targeting
prokaryotes (e.g., streptomycin) or eukaryotes (e.g.,
cycloheximide) often are used, despite well-known
methodological shortcomings, such as inhibitor resis-
tance by some taxa or nontarget organism effects,
when used in mixed assemblage systems (Oremland
and Capone 1988).

The simple method of placing communities in
ambient light or complete darkness often is used to
regulate photosynthetic activity in periphyton (e.g.,
Biggs et al. 2000, Espeland and Wetzel 2001b, Espeland
et al. 2001, Francoeur and Wetzel 2003, Francoeur et al.
2006). However, manipulations of light and dark
treatments are not without drawbacks. Aside from
the occasional difficulty and inconvenience of ensuring
complete darkness within dark treatments, important
parameters dependent upon light exposure, such as
temperature, photorespiration (Wetzel 2001), ultravio-
let (UV) photolysis of recalcitrant dissolved organic C
(DOC) to more labile compounds (Wetzel et al. 1995,
Wetzel 2000), inactivation of extracellular enzymes via
UV photolysis (Espeland and Wetzel 2001a), and light-
mediated uptake of labile DOC (Paerl et al. 1993),
potentially could be biased by light manipulation.

The photosystem II inhibitor 3-(3,4-diclorophenyl)-
1,1-dimethyl urea (DCMU) has been used in place of
light manipulation to control photosynthetic activity in
periphyton (Paerl et al. 1993, Neely and Wetzel 1995,
Kahn and Wetzel 1999, Staats et al. 2000, DeLorenzo et
al. 2001, Espeland and Wetzel 2001b). Few studies
have quantified the efficacy of DCMU or the time
required for DCMU exposure to halt photosynthetic
activity; times ranging from ,5 min (Paerl et al. 1993,
Neely and Wetzel 1995) to .1 d (Espeland and Wetzel
2001b) have been reported. Little is known about the
potential direct effects of DCMU on nontarget micro-
organisms and processes. Neely and Wetzel (1995)
found no significant direct effect of DCMU on the

productivity of wetland heterotrophic bacteria. In most
other instances, the direct effects of DCMU on
nontarget microorganisms and processes simply have
been assumed to be nonexistent. The purpose of our
study was to: 1) determine the efficacy of DCMU
exposure for halting algal photosynthesis in periphy-
ton attached to wetland plant detritus, and 2)
investigate possible direct effects of DCMU exposure
on nontarget heterotrophic microorganisms (i.e., bac-
teria, fungi) and extracellular enzyme activity.

Methods

Microbial community generation and field sampling

Standing dead Typha angustifolia leaf litter was
collected from the Paint Creek wetland (lat
42812.9710N, long 83837.1810W), returned to the labora-
tory, air-dried, and stored at ambient laboratory
temperatures until used. Dried litter was cut into ;16-
cm-long sections and attached to floating wire-mesh
trays with silicone sealant at the ends (;1–2 cm) of each
litter section. A metal strip was attached to the sealant to
clamp litter pieces in place. Mesh trays were submersed
in the wetland (;1–2 cm in depth) on 8 April 2005 and
retrieved after 34 d (experiment 1: microbial production
only) or 73 d (experiment 2: microbial production,
photosystem II activity, and extracellular enzyme
activity). Litter sections were removed from trays by
carefully cutting and gently removing the middle
section (;12 cm) of each piece from the ends attached
to the tray. Litter sections were gently enclosed in
resealable containers with wetland water, placed on ice
in a cooler, and returned to the laboratory (,30 min). In
the laboratory, litter was cut into either 1.7-cm-long
pieces (biomass and production assays, ;3.22 cm2 total
surface area) or 0.85-cm-long pieces (enzyme activity
assays, ;1.61 cm2 total leaf surface area).

Concurrent with microbial sample collection, sur-
face-water samples were collected in acid-washed
bottles, placed on ice, and returned to the laboratory
for analysis of pH, alkalinity, and concentrations of
total P, soluble reactive P (SRP), NH4

þ, and
NO3

–þNO2
–. Surface-water pH was measured using

a Mettler-Toledo MP220 bench-top pH meter (Mettler-
Toledo, Columbus, Ohio). Alkalinity was determined
by titration to pH 4.5 (APHA 1992). Samples for SRP,
NH4

þ and NO3
–þNO2

– were filtered (0.2-lm pore size)
and then frozen (�108C) until analysis; samples for
total phosphorus (TP) were frozen without filtration.
All N and P concentrations were measured using a
Lachat AP300 discrete analyzer (Lachat, Milwaukee,
Wisconsin). TP concentrations were assayed using a
persulfate digestion and the molybdate/ascorbic acid
method as outlined in Hebert and Green (2005). SRP
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was determined using the molybdate/ascorbic acid
method in Hebert (2005). NH4

þwas assayed using the
phenol/nitroprusside/hypochlorite method for unpre-
served samples described in Hebert (2004).
NO3

–þNO2
– concentrations were determined using

the Cd reduction method in Harbridge (2005).

Analysis of microbial biomass, microbial composition, and
litter mass

Algal biomass associated with litter was measured
as chlorophyll a, algal community composition was
determined using brightfield microscopy, bacterial
biomass associated with litter was determined by
epifluorescence microscopy, and fungal biomass was
estimated from concentrations of ergosterol in/on
plant litter. These analyses followed the protocols
detailed in Francoeur et al. (2006). Total litter ash-free
dry mass (i.e., microbial þ plant litter organic mass)
was measured by drying (1058C, 24 h), weighing,
combusting (5008C, 4 h), cooling (in a desiccator), and
reweighing 4 to 5 replicate samples from each
experiment. Total organic C was assumed to be 50%
of total ash-free dry mass.

Effects of DCMU on microbial production and extracellular
enzyme activity

A 2000 lM stock solution of DCMU (Sigma-Aldrich,
St. Louis, Missouri) was prepared in acetone. For each
experiment, this DCMU stock solution was added to
wetland water to make working solutions of 20 lM
DCMU. Equivalent amounts of pure acetone were
added to DCMU-free wetland water to control for any
effect of acetone. The final acetone concentration was
low (0.01% v/v), and any acetone effects on microbial
production and enzyme activity were assumed to be
negligible. Bergman (1980) and Lopez-Rodas et al.
(2001) used similar protocols with ethanol or dimethyl
sulfoxide as the organic solvent for DCMU.

Rates of [14C] bicarbonate incorporation into at-
tached algae (method of Francoeur et al. 2006) were
monitored to quantify the effects of DCMU exposure
on periphytic algal photosynthesis. Litter sections were
incubated (2 h, 208C, 400 lmol m�2 s�1 photosynthet-
ically active radiation [PAR]) in filtered wetland water
with 0.5 lCi of H[14C]O3

–. In each experiment, 3
replicates were spiked with 20 lM DCMU, whereas 3
other replicates remained DCMU free. Killed controls
(3% v/v formalin) were used to correct for nonbiolog-
ical [14C] incorporation. Inorganic C pools were
estimated by measuring alkalinity (titration to pH
4.5; APHA 1992). After incubation, litter and attached
algae were killed with 3% formalin (final concentra-
tion) and filtered, and litter and filters were stored

frozen (�208C). Samples were later fumed with HCl
and dissolved in NaOH. Aliquots were then cleared
with 50% H2O2, mixed with scintillation fluid, and
they were assayed for radioactivity (Beckman LS 6500
Scintillation Counter, corrected for quenching; Beck-
man Coulter, Fullerton, California). Production was
calculated using the equations of Wetzel and Likens
(2000).

To investigate the rapidity of DCMU inhibition of
photosynthesis, pulse-amplitude modulated (PAM)
fluorometry was used to measure periphytic algal
photosystem II electron transport rates after DCMU
exposure during experiment 2. Three litter sections
were placed in wetland water spiked with 20 lM
DCMU, and an additional 3 sections were placed in
DCMU-free wetland water. Light-adapted photosys-
tem II yield (i.e., the Genty parameter, DF/F’m) (Genty
et al. 1989, Kromkamp and Forster 2003) was
measured every 5 min for 15 min using a stand-alone
PAM fluorometer (Diving-PAM, Heinz Walz GmbH,
Effeltrich, Germany). Samples were held in uniform,
low-light conditions (�15 lmol m�2 s�1 PAR) on the
laboratory bench before and during experimentation.

Rates of [3H] leucine incorporation into bacterial
protein (method of Gillies et al. 2006) were used to
quantify the effects of DCMU exposure on periphytic
bacterial production. Litter sections were incubated (30
min, 208C, in complete darkness, 0 lmol m�2 s�1 PAR)
in sterile vials with filtered (0.22-lm pore size) wetland
water containing 2500 nM leucine (specific activity ¼
220 GBq/mmol). In each experiment, 5 vials were
spiked with 20 lM DCMU, whereas 5 other vials
remained DCMU free. Killed controls (5% v/v
trichloroacetic acid [TCA]) were used to correct for
nonbiological [3H] leucine incorporation. Incubations
were terminated with 5% (final concentration) TCA,
and then heated (808C, 30 min). After cooling on ice for
30 min, samples were filtered (0.22-lm pore size),
rinsed with ice-cold solutions of 5% TCA (33), 80%
ethanol (23), and double-distilled H2O (23); dissolved
in alkaline extractant (0.3 M NaOH, 0.1% sodium
dodecyl sulfate [SDS], 25 mM ethylenediamine tetra-
acetic acid [EDTA]); and heated (808C, 60 min). After
cooling, aliquots were neutralized with HCl, dialyzed
against ammonium bicarbonate buffer (0.2 M
NH4HCO3, 0.1 M NaCl, 0.1% SDS, 25 mM EDTA;
500 molecular weight cut-off dialysis membrane),
cleared with 50% H2O2, mixed with scintillation fluid,
and assayed for radioactivity (Beckman LS 6500
Scintillation Counter, corrected for quenching).

Effects of DCMU on instantaneous growth rates of
fungi associated with plant litter were determined by
quantifying rates of [14C] acetate incorporation into
ergosterol (Gessner and Newell 2002). Litter sections
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were incubated (5 h, 208C, in complete darkness, 0
lmol m�2 s�1 PAR) in sterile vials containing filtered
(0.22-lm pore size) wetland water and 5 mM
Na[1-14C] acetate (specific activity ¼ 37 MBq/mmol).
In each experiment, 5 vials were spiked with 20 lM
DCMU, whereas 5 other vials remained DCMU free.
Killed controls (2% v/v formalin) were used to correct
for nonbiological [14C] acetate incorporation. Incorpo-
ration of [14C] acetate label was stopped by placing
vials on ice and immediately filtering (1.2-lm pore
size) the contents. Filters and litter pieces were washed
twice with filtered (0.7-lm pore size) wetland water
and stored at �208C. Ergosterol was extracted and
analyzed as described previously (Francoeur et al.
2006). Ergosterol fractions eluted from the high-
performance liquid chromatography (HPLC) column
were collected, mixed with scintillation fluid, and
assayed for radioactivity (Beckman LS 6500 Scintilla-
tion Counter, corrected for quenching). The [14C]
acetate incorporation rates were converted to fungal
growth rates assuming 12.6 lg of fungal biomass/
nmol acetate incorporated (Gessner and Newell 2002).

Incubations of litter sections with the appropriate
fluorogenic substrate (4-methylumbelliferyl b-D-gluco-
pyranoside, 4-methylumbelliferyl b-D-xylopyranoside,
L-leucine 7-amido-4-methylcoumarin hydrochloride, 4-
methylumbelliferyl phosphate disodium salt, 4-meth-
ylumbelliferyl a-D-glucopyranoside) dissolved in au-
toclaved wetland water were used to investigate the
effects of DCMU exposure on the activities of
periphytic b-glucosidase, b-xylosidase, leucine-amino-
peptidase, and extracellular phosphatase, respectively.
Before enzyme activity assays, litter sections were
placed in Petri dishes with either 20 lM DCMU-spiked
wetland water or DCMU-free wetland water for �5
min to allow DCMU exposure to inhibit photosyn-
thetic activity. After this preincubation period, enzyme
activities were quantified using the method of Fran-
coeur et al. (2006). Litter sections were incubated (30
min, 208C, in complete darkness, 0 lmol m�2 s�1 PAR)
in sterile glass vials with a saturating amount of
substrate. For each enzyme assayed, 5 vials were
spiked with 20 lM DCMU, whereas 5 other vials
remained DCMU free. Litter-free vials served as
controls for nonenzymatically produced fluorescence.
After incubation, an aliquot from each sample was
immediately added to pH 10 carbonate/bicarbonate
buffer (pHydrion, Micro Essential Laboratory, Brook-
lyn, New York) in individual wells of a black 96-well
plate, and fluorescence was measured without delay
using a Fluoroskan Ascent plate reader (excitation
wavelengths: 355 6 40 nm, emission wavelengths: 460
6 40 nm). Methlyumbelliferone sodium salt and 7-
amino-4-methylcoumarin standards were included on

all plates to allow conversion of raw fluorescence to
concentrations. Reaction velocities were determined by
dividing the amount of substrate hydrolyzed by total
litter C and incubation time.

Data analysis

The hypothesis that DCMU exposure would inhibit
algal productivity was tested by: 1) comparing
observed algal production (based on 14C incorpora-
tion) in the presence of DCMU to 0 with 1-sample t-
tests, 2) comparing observed algal production in the
presence and absence of DCMU with 2-sample t-tests,
and 3) comparing fluorescence-based photosynthetic
yield measurements in the presence and absence of
DCMU with 2-sample t-tests. The hypotheses that
DCMU exposure would affect bacterial production,
fungal production, and extracellular enzyme activity
were tested by comparing the relevant response
variable in the presence and absence of DCMU with
2-sample t-tests. All t-tests used 2-sided alternative
hypotheses, and all 2-sample t-tests considered inde-
pendent variances. A power analysis was done for
each 2-sample t-test of microbial production or enzyme
activity. The power of each existing experiment was
calculated based on the assumption that the observed
sample means and pooled standard deviations (meth-
od of Cohen 1977) of each experimental treatment
were true values of population means and standard
deviations, and the number of replicates needed to
achieve a power of 0.90 (at a ¼ 0.05) for rejecting a 2-
sided null hypothesis was calculated. All statistical
calculations were done using SYSTAT (version 10.2;
Systat Software, San Jose, California).

Results

Microbial communities and environmental conditions

The pH (7.85 6 0.23) and alkalinity (243.5 6 31.8 mg
CaCO3/L) of wetland surface waters during the study
were consistent with values previously observed in the
Paint Creek wetland (Francoeur et al. 2006). Nutrient
levels (mean 6 1 SD; 151.5 6 164.8 lg TP/L, 55.5 6

62.9 lg SRP/L, 320.5 6 396.7 lg NH4
þ-N/L, 15.8 6

2.5 lg NO3
–þNO2

– N/L) were high and variable,
relative to previous observations (Francoeur et al.
2006), mainly because of large amounts of TP, SRP, and
NH4

þ present on day 73. Algae, bacteria, and fungi
were all present in the litter-associated microbial
communities, and fungal decomposers dominated
the heterotrophic microbial biomass (.87%) (Table
1). In both experiments, algal communities were
dominated by Chlorophyta, with Cyanophyta also
abundant (Table 2). Heterokontophyta (mainly dia-
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toms) were common in experiment 1, but much less so
in experiment 2. Euglenophyta were always very rare.

Microbial production and extracellular enzyme activity

Algal production (based on 14C incorporation rates)
in the presence of DCMU was not significantly
different from 0 in either experiment (experiment 1: n
¼ 3, p¼ 0.524, 95% confidence interval [CI]¼�0.091 to
0.064 mg C g�1 C h�1; experiment 2: n ¼ 3, p ¼ 0.056,
95% CI ¼�0.012 to 0.394 mg C g�1 C h�1), although
DCMU-based inhibition seemed slightly weaker in
experiment 2. DCMU strongly inhibited algal photo-
synthesis; algal production in DCMU treatments
always was significantly reduced relative to produc-
tion in the DCMU-free treatment (p always ,0.003;
Table 3). In both experiments, the large DCMU
treatment effect relative to small within-treatment
variability resulted in great statistical power in the
algal production experiments (Table 3).

DCMU exposure rapidly disrupted photosystem II
electron transport activity. Even after only 5 min of
exposure, photosystem II yield was significantly
reduced (p , 0.001, ;75% reduction), with slightly
larger reductions (;83%) observed after 10 (p¼ 0.002)
to 15 (p ¼ 0.001) min of exposure (Fig. 1).

In contrast to its strong inhibitory effect on
photosynthesis, DCMU had no significant direct
effects on bacterial production (p always .0.5; Table
3), fungal production (p always .0.34; Table 3), or
extracellular enzyme activity (p always .0.08; Table 4).
In all experiments, bacterial and fungal production
were somewhat greater in the DCMU-amended than
in the DCMU-free treatment, and enzyme activities
were slightly elevated in the DCMU treatment relative
to the DCMU-free treatment in 2 of the 4 experimental
trials. The lack of any strong DCMU effect was
reflected in the low statistical power of the bacterial
and fungal production experiments and the enzyme
activity experiments. Given the observed variability
and negligible treatment effects, power analysis
indicated that great numbers of replicates (bacterial
production: n¼ 254–1860; fungal production: n¼ 108–

112; enzyme activity: n¼ 20–62) would be required to
achieve a 90% chance of detecting a statistically
significant effect of DCMU (Tables 3, 4).

Discussion

Effects on algal photosynthesis

As expected, exposure of periphytic algal assem-
blages to 20 lM DCMU rapidly and effectively
inhibited photosynthesis. Algal production rates in
DCMU-amended wetland water were statistically
indistinguishable from 0, whereas replicate communi-
ties in DCMU-free wetland water displayed robust
photosynthesis. The time series PAM fluorometry
measurements confirmed that inhibition occurred
rapidly, with strong effects occurring within 5 min
after exposure to DCMU.

Our results are consistent with those of other studies
that report rapid inhibition of periphytic photosynthe-
sis by DCMU exposure (Paerl et al. 1993, Neely and
Wetzel 1995). Espeland and Wetzel (2001b) suggested
that the slow (.1-d) onset of inhibition observed in their
study was the result of the gradual addition of a DCMU
solution into a large culture vessel filled with DCMU-
free media and the presence of laminar flow conditions
within the culture vessel. These conditions delayed the
attainment of an effective DCMU concentration within
the culture vessel, and they resulted in the presence of a
thick diffusive boundary layer, which further delayed
the exposure of periphytic microbes to DCMU (Espe-
land and Wetzel 2001b). Such conditions were avoided
in our study because litter sections were immersed
directly in 20 lM DCMU. Given the generally quick
onset of inhibition (Paerl et al. 1993, Neely and Wetzel
1995, our study), a minimal preincubation exposure of 5
to 10 min seems adequate for ensuring that photosyn-
thetic inhibition is complete before commencing with
experimental measurements, as long as DCMU is
added at a sufficient concentration (;20 lM) and
transport of DCMU into periphyton is not unduly
hindered by a thick diffusive boundary layer.

The biomass of the 3 microbial groups in each
experiment was similar to those previously observed
for submerged T. angustifolia litter in the Paint Creek

TABLE 1. Mean (61 SD) biomass of constituents of
periphyton communities used in our study. In each
experiment, algal and bacterial biomass n ¼ 4 and fungal
biomass n ¼10.

Experiment

Algal biomass
(mg chlorophyll

a/g C)

Bacterial
biomass

(mg C/g C)

Fungal
biomass

(mg C/g C)

1 0.152 6 0.07 2.23 6 0.55 26.5 6 11.0
2 0.197 6 0.01 2.60 6 0.20 18.5 6 5.2

TABLE 2. Mean (61 SD) relative abundance (% total cells)
of algal divisions in microbial communities. n ¼ 4 in each
experiment.

Division Experiment 1 Experiment 2

Chlorophyta 67 6 13 66 6 27
Cyanophyta 18 6 13 32 6 28
Heterokontophyta 14 6 8 2 6 4
Euglenophyta ,1 6 1 ,1 6 ,1
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wetland (Francoeur et al. 2006, Gillies et al. 2006). The
relatively greater prevalence of cyanobacteria in com-
munities in experiment 2 (32% vs 18% in experiment 1)
might have contributed to the slightly (but nonsignif-
icantly) greater 14C incorporation observed in the
presence of DCMU in experiment 2 than in experiment
1. Photosystem II-independent anoxygenic photosyn-
thesis does occur in cyanobacteria (Garlick et al. 1977,
Cohen et al. 1986) and can result in substantial 14C
incorporation in communities with abundant cyano-
bacteria and sulfide (e.g., Pinckney and Paerl 1997).
However, anoxygenic photosynthesis is unlikely to
have played any role in our experiments because of the

requirement for sulfide as an electron donor. More
important for our experiments, respiratory and photo-
synthetic electron transport chains are colocated on
cyanobacterial thylakoid membranes and they share
several components (Campbell et al. 1998). Thus,
electrons from cyanobacterial respiration can fuel
limited cyanobacterial photosystem I and Calvin cycle
function even with complete inhibition of electron flow
from photosystem II (Dominy and Williams 1987,
Campbell et al. 1998). This phenomenon seemed to be
relatively weak in our experiments because 14C incor-
poration in the presence of DCMU was never statisti-
cally different from 0. Regardless, inhibition of electron
flow from photosystem II will prevent O2 production,
even in communities dominated by cyanobacteria (e.g.,
Pinckney and Paerl 1997), and reliance on electrons
from respiration to drive Calvin cycle function will
prevent net organic C production because organic C
must be mineralized to produce the electrons required
for the fixation and incorporation of inorganic C.

The presence of a substantial cyanobacterial com-
ponent also probably accounts for the small residual
photosystem II yield signal observed in the presence of
DCMU. In eukaryotes, fluorometric assay of photo-
system II yield (i.e., the Genty parameter) is a good
measure of photosystem II electron transport. Howev-
er, it is only an approximate measure of cyanobacterial
photosystem II electron transport because of the
relatively large cyanobacterial photosystem I fluores-
cence signal and the wider variety of ways in which
cyanobacteria can distribute electrons and photochem-
ical excitation (Campbell et al. 1998).

Effects on bacteria, fungi, and enzyme activity

In contrast to its strong inhibition of photosynthetic
activity, 20 lM DCMU had negligible direct effects on
bacterial and fungal production. The small magnitude
of any DCMU effect relative to the inherent variability

TABLE 3. Mean (61 SD) production of algae, bacteria, and fungi in periphyton in 3-(3,4-diclorophenyl)-1,1-dimethyl urea
(DCMU) exposure experiments. Algal production was measured as mg C g�1 C h�1, bacterial production as lg C g C�1 h�1, and
fungal production as mg C g C�1 d�1. Percentage of change refers to the mean difference between treatments with (þ) and without
(–) DCMU. p values, power, and the replication (n) required for a power of 0.90 refer to 2-sample t-tests based on the experimental
data, a 2-tailed null hypothesis, and a ¼ 0.05. PAR ¼ photosynthetically active radiation.

Experiment
Periphyton
component

Incubation PAR
(lmol m�2 s�1) n

Treatment

% change p Power
n needed for
power ¼ 0.90þDCMU –DCMU

1 Algae 400 6 –0.014 6 0.0311 0.373 6 0.104 –104 0.003 0.993 6
Bacteria 0 10 93.58 6 16.04 82.11 6 36.28 14 0.543 0.088 254
Fungi 0 10 0.446 6 0.161 0.351 6 0.135 27 0.346 0.144 108

2 Algae 400 6 0.191 6 0.082 0.667 6 0.086 –71 0.002 0.998 6
Bacteria 0 10 245.50 6 52.49 229.96 6 136.09 7 0.821 0.055 1860
Fungi 0 10 0.609 6 0.320 0.441 6 0.210 38 0.361 0.139 112

FIG. 1. Mean (61 SD) light-adapted photosystem II yield
(Gentry parameter¼DF/F0

m) of periphytic algae over 15 min
of exposure to 20 lM 3-(3,4-diclorophenyl)-1,1-dimethyl urea
(DCMU). Asterisks denote significant differences between
treatments with (þ) and without (–) DCMU within a
sampling time.
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of bacterial and fungal production was highlighted in
the power analysis. Assuming that our data accurately
represent the DCMU effect size and within-treatment
variability in bacterial and fungal production, 108 to
1860 replicates would be required to conduct experi-
ments capable of detecting differences as small as
those observed with a power of 0.9. The data do not
support the hypothesis that DCMU inhibits bacterial
or fungal production.

The presence of DCMU also had little direct effect on
periphytic extracellular enzyme activity. In 2 of 4
experimental trials, activity was slightly depressed,
whereas activity was slightly increased in the remain-
ing 2 trials; no statistically significant effects were ever
observed. The small magnitude of any DCMU effect
relative to the inherent variability of periphytic
extracellular enzyme activities was highlighted in the
power analysis. Assuming that our data accurately
represent the DCMU effect size and within-treatment
variability in extracellular enzyme activity, 20 to 62
replicates would be required to conduct experiments
capable of detecting differences as small as those
observed with a power of 0.9.

Active algal photosynthesis can cause simultaneous
increases in periphytic bacterial production (Murray et
al. 1986, Neely and Wetzel 1995, Espeland et al. 2001)
and periphytic extracellular enzyme activity (Espeland
et al. 2001, Francoeur and Wetzel 2003, Francoeur et al.
2006, Rier et al. 2007). We conducted our heterotrophic
production and enzyme activity assays in complete
darkness to prevent the occurrence of any indirect
influences of DCMU mediated by its inhibition of algal
photosynthesis. Thus, our experiments measured the
potential for DCMU to cause experimental artifacts
during the analysis of heterotrophic microbial produc-
tion and enzyme activity.

The lack of any strong, consistent direct DCMU
effects on bacterial or fungal production and extracel-
lular enzyme activity suggests that DCMU has
minimal nontarget effects in periphyton communities.

Our results are consistent with a previous study that
reported a lack of any DCMU effect on heterotrophic
bacterial production (Neely and Wetzel 1995). This
apparent lack of nontarget effects, combined with
good efficacy against algal photosynthesis and a
relative ease of use, suggests that DCMU is a useful
selective inhibitor for investigations of interactions
among autotrophic and heterotrophic periphytic mi-
crobiota. Use of DCMU instead of light exclusion for
photosynthesis regulation also could avoid any poten-
tial confounding bias of other light-sensitive processes.

DCMU affects only oxygenic photosynthetic activity
because DCMU is a photosystem II inhibitor. Users
should be aware that, under certain circumstances
(e.g., sulfide-rich environments with abundant cyano-
bacteria or green and purple photosynthetic bacteria),
photosystem II-independent anoxygenic photosynthe-
sis is an important autotrophic pathway in periphyton
(e.g., Pinckney and Paerl 1997). In such cases, DCMU-
based protocols should be applied with care, and
conclusions from such experiments must be restricted
appropriately.
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