140 research outputs found
Recommended from our members
Internal corporate venturing: A review of (almost) five decades of literature
Cavitation erosion damage of scroll steel plates by high-speed gas working fluid
A steel plate is one of the critical components of a scroll expander system that can experience cavitation micro-pitting while in service. The content of the present paper consists of two distinct but interrelated parts. The first part aims to highlight that the use of Computational Fluid Dynamics (CFD) simulations in conjunction with experimental measurements can constitute a quite promising tool for the prediction of cavitation erosion areas in scroll expander systems. For this purpose a three-dimensional CFD, steady state numerical simulation of the refrigerant working fluid is employed. Numerical results revealed the critical areas where cavitation bubbles are formed. These numerical critical areas are in direct qualitative agreement with the actual eroded regions by cavitation, which were found by microscopic observations across the steel plate on an after use, scroll expander system. The second part of the paper, aims to further investigate the behaviour and the durability of the steel plate of the studied scroll expander system subjected to cavitation erosion by using an ultrasonic experimental test rig. Scanning Electron Microscopy (SEM) and optical interferometer micrographs of the damaged surfaces were observed, showing the nature of the cavitation erosion mechanism and the morphological alterations of the steel plate samples. Experimental results are explained in terms of the cavitation erosion rates, roughness profile, accumulated strain energy, and hardness of the matrix. The experimental study can serve as a valuable input for future development of a CFD numerical model that predicts both cavitation bubbles formation as well as cavitation damage induced by the bubbles that implode on the steels plates
Recommended from our members
Simulation of micro-flow dynamics at low capillary numbers using adaptive interface compression
A numerical framework for modelling micro-scale multiphase flows with sharp interfaces has been developed. The suggested methodology is targeting the efficient and yet rigorous simulation of complex interface motion at capillary dominated flows (low capillary number). Such flows are encountered in various configurations ranging from micro-devices to naturally occurring porous media. The methodology uses as a basis the Volume-of-Fluid (VoF) method combined with additional sharpening smoothing and filtering algorithms for the interface capturing. These algorithms help the minimisation of the parasitic currents present in flow simulations, when viscous forces and surface tension dominate inertial forces, like in porous media. The framework is implemented within a finite volume code (OpenFOAM) using a limited Multidimensional Universal Limiter with Explicit Solution (MULES) implicit formulation, which allows larger time steps at low capillary numbers to be utilised. In addition, an adaptive interface compression scheme is introduced for the first time in order to allow for a dynamic estimation of the compressive velocity only at the areas of interest and thus has the advantage of avoiding the use of a-priori defined parameters. The adaptive method is found to increase the numerical accuracy and to reduce the sensitivity of the methodology to tuning parameters. The accuracy and stability of the proposed model is verified against five different benchmark test cases. Moreover, numerical results are compared against analytical solutions as well as available experimental data, which reveal improved solutions relative to the standard VoF solver
Penetration characteristics of a liquid droplet impacting on a narrow gap:Experimental and numerical analysis
Experimentalists are limited in the amount of information they can derive from drop impact experiments on porous surfaces because of the short timescales involved and the normally opaque nature of porous materials. Numerical simulations can supplement experiments and provide researchers with previously unattainable information such as velocity and pressure profiles, and quantification of fluid volume flow rates into the pores. Ethanol drops, 2.0 mm in diameter, are impacted on a narrow gap at Weber numbers that match the impact of water drops, also 2.0 mm in diameter, on the same gap size in a previous study. The experiments show the ethanol drops cleaving at all Weber numbers tested, while the water drops completely enter the gap at low Weber numbers and only cleave at higher Weber numbers. A volume of fluid numerical model of the experiments is constructed in OpenFOAM and used to probe the interior of the drops during impact. For the water drop, a high-pressure region fills the drop during impact which continuously drives liquid into the gap. For the ethanol drops, the high-pressure region is smaller and quickly attenuates, which results in a near-zero vertical velocity at the entrance of the gap. Compared to water, the lower surface tension of ethanol causes these drops to spread further upon impact, recoil less, and overall have less liquid over the gap, which promotes cleaving. Against a superficial thought, when the penetration of liquids into porous materials is to be maximized, a higher surface tension liquid is therefore desirable
Heavy metal toxicity and the aetiology of glaucoma
Despite recent advances, our understanding of the aetiological mechanisms underlying glaucoma remains incomplete. Heavy metals toxicity has been linked to the development of neurodegenerative diseases and various ocular pathologies. Given the similarities in pathophysiology between glaucoma and some neurodegenerative disorders, it is plausible that heavy metal toxicity may play a role in the development of glaucoma. Heavy metal exposure may be occupational, or through water or dietary contamination. In this report, we review mechanisms for systemic and neurotoxicity for arsenic, cadmium, chromium, cobalt, lead, mercury, and manganese, and weigh the evidence for an association between glaucoma and the accumulation of heavy metals either in ocular tissues or in the central nervous system
- …