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Highlights1

• Multiphase flow solver using adaptive compression scheme has been introduced.2

• Wide range of conditions using well-established benchmark cases has been tested.3

• The adaptive compression facilitates simulating flows at law capillary numbers.4

• The adaptive nature of the coef. counter balances the need for very fine grids.5

• Using the mentioned method gives accurate results in estimating bubble formation.6

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Simulation of micro-flow dynamics at low capillary numbers using adaptive7

interface compression I
8

M. Aboukhedra,∗, A. Georgoulasb, M. Marengob, M. Gavaisesa, K. Vogiatzakib9

aDepartment of Mechanical Engineering, City, University of London, UK10
bSchool of Computing, Engineering and Mathematics, Advanced Engineering Centre, University of Brighton, Brighton, UK11

Abstract12

A numerical framework for modelling micro-scale multiphase flows with sharp interfaces has been13

developed. The suggested methodology is targeting the efficient and yet rigorous simulation of complex14

interface motion at capillary dominated flows (low capillary number). Such flows are encountered in vari-15

ous configurations ranging from micro-devices to naturally occurring porous media. The methodology uses16

as a basis the Volume-of-Fluid (VoF) method combined with additional sharpening smoothing and filtering17

algorithms for the interface capturing. These algorithms help the minimisation of the parasitic currents18

present in flow simulations, when viscous forces and surface tension dominate inertial forces, like in porous19

media. The framework is implemented within a finite volume code (OpenFOAM) using a limited Multi-20

dimensional Universal Limiter with Explicit Solution (MULES) implicit formulation, which allows larger21

time steps at low capillary numbers to be utilised. In addition, an adaptive interface compression scheme22

is introduced for the first time in order to allow for a dynamic estimation of the compressive velocity only23

at the areas of interest and thus has the advantage of avoiding the use of a-priori defined parameters. The24

adaptive method is found to increase the numerical accuracy and to reduce the sensitivity of the methodol-25

ogy to tuning parameters. The accuracy and stability of the proposed model is verified against five different26

benchmark test cases. Moreover, numerical results are compared against analytical solutions as well as27

available experimental data, which reveal improved solutions relative to the standard VoF solver.28

Keywords: CFD, interFoam, two-phase flows, microfluidics, surface tension forces, parasitic currents,29

micro-scale modelling30
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List of Nomenclature

u Velocity
p Pressure
pc Capillary pressure
pd Dynamic pressure
f External forces
fg Gravitational forces
fs Surface tension force
ρ Density
µ Dynamic viscosity
ur, f Relative velocity at cell faces
σ Surface tension
φ f Volumetric flux
φc Compression volumetric flux
φ Capillary flux
φthreshold Threshold volumetric flux
Vi Volume per grid cell
S f Outward-pointing face area
κ Interface curvature
κ f Filtered interface curvature calculated based on smooth function αsmooth

κs,i+1 Smooth interface curvature calculated based on smooth function κ f

κ f inal Weighted interface curvature calculated based on smooth function κs,i

ηs Normal vector to the interface
δs Dirac delta function
α Volume fraction
αsmooth Volume fraction using Laplacian formulation
αsh Sharp inductor function
Ccompr. Constant interface compression coefficient
Cadp Adaptive interface compression
Csh Sharpening coefficient
U f filtering coefficient
〈ηs〉 f Face centred normal vector
〈5α〉 f Volume fraction interpolated from cell centre to face centre
δn Small value

1. Introduction31

Flows through ”narrow passages” such as micro-channels or pore-scale flows whose dimensions are32

less than O(mm) and greater than O(µm) differ from their macroscopic counterparts at important aspects:33

the small size of the geometries makes molecular effects such as wall slip or wettability more important,34
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while amplifies the magnitudes of certain ordinary continuum effects associated with strain rate and shear35

stress. Such flows are present in various natural formations (rocks and human organs) as well as man-made36

applications (micro-conductors, micro-emulsions, etc.). Thus, microscale physics attracts the interest of37

various disciplines including cosmetic and pharmaceutical industries as well as biomedical and petroleum38

engineering. For more details on the application of microscale geometries, the reader is referred to [1].39

Among all these applications transportation of droplets in microchannels at low Capillary (Ca =
µu
σ ) num-40

bers has attracted the interest of researchers from the theoretical and experimental point of view [2, 3, 4].41

For example, understanding the dynamics of immiscible fluids in micro-devices can facilitate the creation42

of monodisperse emulsions. Droplets of the same size move with low velocities through microchannel43

networks and are used as micro-reactors to study very fast chemical kinetics [5]. Another example of low44

Ca flow dynamics in micro-scale can be seen at trapped oil blobs in porous reservoirs. Understanding the45

trapping flow dynamics at the pore scale level can be the key to minimising the trapping of a non-wetting46

phase and enhancing recovery systems of hydrocarbons, [6]. Although a large number of methods has been47

developed for simulating multiphase flows at macro-scale including the well known Level Sets (LS) [7] and48

Volume of Fluid (VoF) methods [8], the extension of these methods to micro-scale is not always straightfor-49

ward. The main weakness of the LS methods is that they do not preserve mass. As a result, poorly resolved50

regions of the flow are typically susceptible to mass loss behaviour and loss of signed distance property due51

to advection errors. Various modification have been suggested focusing on solving the conservation issues52

[9], extending the method to high Reynolds numbers [10] and to unstructured meshes [11, 12]. While using53

a re-initialization procedure as discussed by [13] is a solution to the mass conservation issue, it increases54

the computational cost and creates an artificial interface displacement that may affect mass conservation,55

see the review by Russo and Smereka [14] for details. Similarly the VoF method is based on the numerical56

solution of a transport equation that distinguishes the two fluids in the domain, and it represents the volume57

percentage of each fluid phase in each cell over the total volume of the cell. The interface between the two58

phases is defined in the cells where the VoF function takes a value between (0, 1). In incompressible flows,59

the mass conservation is achieved by using either a geometrical reconstruction coupled with a geometrical60

approximation of the volume of fluid advection or a compressive scheme as discussed by Rusche [15] and61

implemented by Weller et al. [16]. The VoF method has been the most widely used interface capturing62
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method due to ease of implementation as reviewed by Wörner [2].63

Within the VoF framework two commonly used methods for interface representation exist: (a) a com-64

pressive method and (b) a geometric method. Both VoF methods are used in order to calculate the discrete65

volume fraction of each phase within a cell, which is then transported based on the underlying fluid ve-66

locity. Compressive VoF methods discretise the partial differential equation describing the transport of the67

volume fraction of each phase using algebraic differencing schemes [17, 18]. The key for the accuracy of68

these methods is that, in order to keep the interface sharp and without distortion, the temporal and spatial69

discretisation should be performed using higher order schemes and careful tuning. Otherwise the method70

may suffer from excessive diffusion of the interface region which also affects the calculation of the interface71

curvature and the normal interface vectors. Park et al. [19] and Gopala and van Wachem [20] showed the72

compressive VoF methods capabilities of advecting sharp interface, and they also underlined the difficulties73

in retaining the shape and sharpness of the interface. Using a geometric method, an explicit representa-74

tion of the interface is advected, reconstructed from the VoF volume fraction field. The piecewise linear75

methods so-called (PLIC) is the most developed reconstruction method found in the literature [21, 22]. Ge-76

ometric methods advect the interface very accurately, but their main drawback is their complexity for 3D77

applications, in particular when used in conjunction with an unstructured mesh [23].78

Recently, the coupling between VoF and LS, the so-called Coupled Level Set Volume Of Fluid (CLSVoF)79

method [24] has also received significant attention since it combines the advantages of both methods, i.e.,80

the VoF mass conservation and the LS interface sharpness [24, 25] . On the downside, this approach also81

combines the weaknesses of each method since techniques to keep the VoF interface sharp and reinitialise82

the distancing function are needed. Based on various published results for both methods [20, 26, 27, 28] the83

existent frameworks reviewed in the previous paragraph - regardless of the various modifications available84

- still suffer from their inherent severe drawbacks. These drawbacks are more pronounced in low Ca flows,85

and, as discussed in detail in Popinet and Zaleski [29], Tryggvason et al. [30] and Bilger et al. [31], stem86

from the fact that sharp discontinuities such as interfaces are represented by finite volume integrals [8]. The87

most common issue is that in all implicit interface capturing methods, the interface location is known by88

defining the normal and the curvature implicitly. For the VoF methods ,in particular, which are based on the89

representation of the discontinuous interface with continuous colour function, the calculation of the proper-90
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ties of each phase is possible, given an accurate numerical scheme for solving the colour function transport91

equation is available. However, the accuracy of the calculated interface curvature (that is then required92

for the calculation of the capillary pressure force) depends on determining the derivative of the introduced93

discontinuous colour function, which is considered to be difficult from a numerical point of view, and may94

leads to numerical instabilities [32].95

An additional issue is the generation of non-physical velocities at the interface which are known as96

”spurious” or ”parasitic” currents. The primary sources of spurious currents have been identified as the97

combination of inaccurate interface curvature and lack of a discrete force balance as discussed by Francois98

et al. [33]. It should be stressed that the local force imbalance between the capillary pressure and the pressure99

arising from the normal component of the surface tension force vectors (due to the imprecise evaluation of100

the local curvature) can create the non-physical velocities, (spurious currents”) which are commonly small101

in absolute values in inertia dominated flows, but become very problematic in capillary dominated flows.102

Numerical challenges related to the advection of the interface in the context of VoF are well documented103

by Tryggvason et al. [30]. Intrinsic to the method, regardless if geometric reconstruction or interface com-104

pression is used, is the numerical diffusion of the interface, which is highly dependent on the mesh size [18].105

The numerical diffusion can be reduced by using a geometrical reconstruction coupled with a geometrical106

approximation of the VoF advection as discussed by Roenby et al. [34]. Alternatively, using a compressive107

algorithm, the convective term of the VoF equation can be discretised using a compressive differencing108

scheme designed to preserve the interface sharpness. Examples include the HRIC by Muzaferija and Peric109

[35], or the compressive model available within OpenFoam [16]. Compression schemes do not require any110

geometrical reconstruction of the interface and extension to three dimensions and unstructured meshes is111

straightforward. However, compression schemes are not always sufficient to eliminate numerical diffusion112

completely and additional treatment is needed [36].113

Various remedies that still have room for development have been suggested, and they can be sum-114

marised as following: (i) ensuring an accurate balance between local pressure and surface tension gradient.115

In Francois et al. [33] a cell-centered framework has been introduced. It is demonstrated that this algorithm116

can achieve an exact balance of between local pressure and surface tension gradient using structured mesh.117

Moreover, Francois et al. [33] and [37] discussed the origin of spurious currents within the introduced118
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balanced-force flow algorithms, as they highlighted the deficiencies introduced at the interface curvature119

estimation. (ii) sharp representation of the interface, with accurate curvature estimation and introduction120

of a so-called ”compression velocity” to damp diffusion. Ubbink and Issa [18] introduced the compressive121

discretisation scheme so-called Compressive Interface Capturing Scheme for Arbitrary Meshes CICSAM122

that makes a use of the normalised variable diagram concept introduced by Leonard [38]. Popinet [39]123

generalised a height-function and CSF formulations to an adaptive quad/octree discretisation to allow re-124

finement along the interface for the case of capillary breakup of a three-dimensional liquid jet. Moreover,125

[39] discusses the long-standing problem of ”parasitic currents” around a stationary droplet in contrast to126

the recent study of Francois et al. [33], where the issue is shown to be solved by the combination of appro-127

priate implementations of a balanced-force CSF approach and height-function curvature estimation. (iii)128

implicit or semi-implicit treatment of surface tension, Denner and van Wachem [40] reviewed the time-step129

requirements associated with resolving the dynamics of the equations governing capillary waves, to deter-130

mine whether explicit and implicit treatments of surface tension have different time-step requirements with131

respect to the (1) dispersion of capillary waves, and (2) the formulation of an accurate time-step criterion for132

the propagation of capillary waves based on established numerical principles. The fully-coupled numerical133

framework with implicit coupling of the governing equations and the interface advection, and an implicit134

treatment of surface tension proposed by [40] was used to study the temporal resolution of capillary waves135

with explicit and implicit treatment of surface tension.136

In the present work, a new framework for modelling immiscible two-phase flows for low Ca applications137

dominated by surface tension is suggested. The standard multiphase flow solver of OpenFOAM 2.3x has138

been extended to include sharpening and smoothing interface capturing techniques suitable for low Ca139

numbers flow. In addition a new generalised methodology that utilises an adaptive interface compression is140

introduced for the first time. While existing compression schemes are based on an a priori tuned parameter,141

which is typically kept constant throughout the simulations, in the present study compression is activated142

only in areas that the interface is prone to diffusion and the parameter is thus defined adaptively. This143

adaptive scheme is proved to limit the interface diffusion and to keep parasitic currents to minimal levels144

while reducing the computational time. The proposed framework for interface advection aspires to offer145

better modelling of flows in microscale that up to date have been proven problematic. The paper is structured146
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as following: Initially the numerical framework underlining the modifications suggested over the traditional147

VoF methodology in order to achieve better representation of the interface is introduced. The effect of148

each parameter used in the proposed framework is then evaluated individually based on a wide range of149

benchmark cases. The first test case refers to single and multiple droplet relaxations in a zero velocity field,150

aiming to assess the capability of the framework to damp spurious currents using various combination of151

control parameter. The evaluation of the solver for an advection test using the Zalesak disk [41] is also152

presented followed by results relevant to the motion of circle in a vortex field (Roenby et al. [34], Rider and153

Kothe [42]). Finally, a numerical study of the generation of bubbles in a T-junction is studied to evaluate154

the introduced framework in simulating more complex two-phase flows at a low Ca numbers.155

2. Numerical method156

The method presented in this section is implemented within the open source CFD toolkit OpenFOAM157

[43]. An incompressible and isothermal two-phase flow with constant phase densities ρ1 and ρ2 and vis-158

cosities µ1 and µ2 is considered. The two phases are treated as one fluid and a single set of equations is159

solved in the entire computational domain. The volume fraction, α of each phase within a cell is defined160

by an additional transport equation. The formulation for the conservation of mass and momentum for the161

phase mixture is given by the following equations:162

∇ · u = 0 (1)

D
Dt

(ρu) = ∇ · T − ∇p + f (2)

where u is the fluid velocity, p is the pressure and ρ is the density. The pressure-velocity coupling is163

handled using the Pressure-Implicit with Splitting Operators(PISO) method of [44, 45]. The term ∇ · T =164

∇ · (µ∇u) + ∇u · ∇µ is the viscous stress tensor. The term f = fg + fs corresponds to all the external165

forces, i.e. fg = ρg is the gravitational force and fs represents the capillary forces for the case of constant166

surface tension coefficient σ. The global properties are weighted averages of the phase properties through167

the volume fraction value that is calculated in each cell:168
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ρ = ρ1 + (ρ2 − ρ1)α (3)

µ = µ1 + (µ2 − µ1)α (4)

The sharp interface Γ represents a discontinuous change of the properties of the two fluids. The surface169

tension force must balance the jump in the stress tensor along the fluid interface. At each time step, the170

dynamics of the interface are determined by the Young-Laplace balance condition as;171

∆Pexact = σκ (5)

accounting for a constant surface tension coefficient σ along the interface. The term κ represents the inter-172

face curvature. The term on the right-hand side of Eq. 5 is effectively the source term in the Navier–Stokes173

equations for the singular capillary force, that is only present at the interface. In the proposed numerical174

method, the Continuum Surface Force (CSF) description of Brackbill et al. [8] is used to represent the175

surface tension forces in the following form:176

fs = σκ f inalδs (6)

where the term κ f inal represents the interface curvature at the final stage of smoothing as discussed in section177

2.2, δs is a delta function defined on the interface, and ηs is the normal vector to the interface αsmooth as178

discussed in section 2.2 and is calculated by the following equation:179

ηs =
∇αsmooth

|∇αsmooth| (7)

The terms δs and κ f are associated with the artificially smoothed and sharpened indicator function fields that180

will be discussed in details in the following section. In the VoF method, the indicator function α represents181

the volume fraction of one of the fluid phases in each computational cell. The indicator function evolves182

spatially and temporally according to an advection transport equation of the following general form:183

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

∂α

∂t
+ ∇ · (αu) = 0 (8)

Ideally, the interface between the two phases should be massless since it represents a sharp discontinuity.184

However, within VoF formulation the numerical diffusion of Eq. 8 results in values of α that vary between185

0 and 1.186

The framework described above reflects the generalised framework of VoF methods that has been used in187

an extensive range of two-phase flow problems with various adjustments and different degrees of success.188

In the following sub-sections, an enhanced version of this basic framework is presented; its validity is189

demonstrated through a range of benchmark cases that addresses some numerically challenging problems190

reported in the relevant literature.191

2.1. Adaptive Compression Scheme (Implicit)192

To deal with the problem of numerical diffusion of α, an extra compression term is used in order to limit193

the convection term of Eq. 8 and consequently the thickness of the interface. Its numerical significance194

relays on defining local flow (u) at the interface and preventing the increase of the gradient when alpha is195

not constant, (i.e. the absolute value of the time derivative increases to counterbalance). The model for the196

compression term makes use of the two-fluid Eulerian approach, where phase fraction equations are solved197

separately for each individual phase, assuming that the contributions of two fluids velocities for the free198

surface are proportional to the corresponding phase fraction. These phase velocities (u1 and u2) relate with199

the global velocity of the one fluid approach u as:200

u = αu1 + (1 − α)u2 (9)

Replacing the above equation to Eq. 8 one gets:201

∂α

∂t
+ ∇ ·

{(
αu1 + (1 − α)u2

)
α
}

= 0 (10)

Considering a relative velocity between the two phases (ur=u1-u2) which arises from the density and202

viscosity stresses changes across the interface, the above equation can be written in terms of the velocity of203
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the fluid:204

∂α

∂t
+ ∇ · (u1α)−∇ ·

{
ur, fα

(
(1 − α)

)}
︸                    ︷︷                    ︸

compression term

= 0 (11)

It should be noticed that in the above equation in the calculation of ∇ · (uα ) term the unknown velocity205

u1 appears instead of u creating an inconsistency with the basic concept of the one fluid approach. However,206

since the compression term in reality is active only at the interface, continuity imposes u1 = u2 = u and thus207

u1 by u can be replaced. The discretisation of the compression term in Eq. 11 is not based directly on the208

calculation of the relative velocity ur at cell faces from Eq. 9 since u1 and u2 are unknown. It is instead209

formulated based on the maximum velocity magnitude at the interface region and its direction, which is210

determined from the gradient of the phase fraction:211

ur, f = min

(
Ccompr.

|φ f |
|S f | ,max

[ |φ f |
|S f |

])(
〈ηs〉 f

)
(12)

where the term φ f is the volumetric flux and S f is the outward-pointing face area vector and 〈ηs〉 f is212

the face centred interface normal vector. 〈〉 f is used to denote interpolation from cell centres to face centres213

using a linear interpolation scheme, and defined as following:214

〈ηs〉 f =
〈5α〉 f

|〈5α〉 f + δn| · S f (13)

and

δn =
1e−8

(∑
N Vi
N

)1/3
(14)

where δn is a small number to ensure that the denominator never becomes zero, N is the number of215

computational cells, for each grid block i and Vi is its volume216

The compressive term is taken into consideration only at the interface region and it is calculated in the217

normal direction to the interface. The maximum operation in Eq. 12 is performed over the entire domain,218

while the minimum operation is done locally on each face. The constant (Ccompr.) is a user-specified value,219

which serves as a tuning parameter. Depending on its value, different levels of compression result are220

calculated. For example, there is no compression for C= 0 while there is moderate compression with221
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C≤1 and enhanced compression for C≥1. In most of the simulations presented here (Ccompr.) is taken as222

unity, after initial trial simulations. Values higher than unity in this case may lead to non-physical results.223

Generally, this compression factor can take values from 0 (no compression) up to 4 (maximum compression)224

as suggested in the literature; the selected values are case specific. To overcome the need for a priori tuning,225

in the present numerical framework a new adaptive algorithm has been implemented that is based on the idea226

of introducing instead of a constant value for Ccompr. a dynamic one Cadp through the following relation:227

Cadp =

∣∣∣∣∣∣ −
un · ∇α
|un||∇α|

∣∣∣∣∣∣ (15)

φc = max
(
Cadp,Ccompr.

) |φ f |
|S f | (16)

where φc is the compression volumetric flux calculated, un represents each phase velocity normal to the228

interface velocity. It is expressed as229

un =
(
U · ns

)
x
(
ns

)
x|α − 0.01| ∗ |0.99 − α| (17)

The concept of using un is shown in Fig. 1: when the interface profile becomes diffusive (wide) Cadp

value will increase accordingly in the zone of interest, while when the profile is already sharp and additional

compression is not necessary Cadp will go to zero. Note that the compression term in Eq. 11 is only valid for

the cells at the interface. However, to solve Eq. 15, a wider region of α is required. Therefore, the facial cell

field is extrapolated to a wider region using the expression (near interface) in Eq. 17 as (|α−0.01|∗|0.99−α|).
The new calculated, adaptive compression coefficient φc then substitutes the original Ccompr.

|φ f |
|S f | and Eq. 12

can be rewritten as:

ur, f = min

(
φc,max

[ |φ f |
|S f |

])(
〈ηs〉 f

)
(18)

The new equation still has a user defined value Ccompr. in cases when the adaptive coefficient is not sufficient.230

2.2. Smoothing Scheme (Explicit)231

By solving the transport equation for the volume fraction (Eq. 11), the value of (α) at the cell is updated.232

In order to proceed with the calculation of the interface surface scalar fields for the calculation of ηs and κ,233
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Figure 1: Schematic to represent the adaptive compression Cadp selection criteria

linear extrapolation from the cell centres is used. At this stage, the value of α sharply changes over a thin234

region as a result of the compression step. This abrupt change of the indicator function creates errors in235

calculating the normal vectors and the curvature of radius of the interface, which will be used to evaluate the236

interfacial forces. These errors induce non-physical parasitic currents in the interfacial region. A commonly237

followed approach in the literature to suppress these artefacts is to compute the interface curvature from238

a smoothed function αsmooth, which is calculated by the smoother proposed by Lafaurie et al. [17] and239

applied in OpenFOAM by Georgoulas et al. [46] and Raeini et al. [47]. The indicator function is artificially240

smoothed by interpolating it from cell centres to face centres and then back to the cell centres recursively241

using the following equation:242

αi+1 = 0.5〈(αi)c→ f 〉 f→c − 0.5αi (19)

Initial trial simulations indicated that the recursive interpolation between the cell and face centres can243

be repeated up to three times, in order to prevent decoupling of the indicator function from the smoothed244

function. After smoothing is implemented, the interface normal vectors in the cells in the vicinity of the245

interface, are filtered using a Laplacian formulation. Equation 20 in Georgoulas et al. [46] is used in order246

to transform the VOF function (αi+1) to a smoother function (αsmooth):247

αsmooth =

∑n
f =1(αi+1) f S f
∑n

f =1 S f
(20)

where the subscript denotes the face index ( f ) and (n) the times that the procedure is repeated in order248
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to get a smoothed field. The value at the face centre is calculated using linear interpolation. It should249

be stressed that smoothing tends to level out high curvature regions and should therefore be applied only250

up to the level that is strictly necessary to sufficiently suppress parasitic currents. After calculating the251

(αsmooth), the interface normal vectors are computed using 7, and the interface curvature at the cell centres252

can be obtained by κ f = −∇ · (ηs). Then in order to model the motion of the interfaces more accurately,253

an additional smoothing operation is performed to the curvature. The interface curvature in the direction254

normal to the interface is calculated, recursively for two iterations:255

κs,i+1 = 2
√
αsmooth(1 − αsmooth)κ f + (1 − 2

√
αsmooth(1 − αsmooth)) ∗

〈〈
κs,i
√
αsmooth(1 − αsmooth)

〉
c→ f

〉
f→c〈〈√

αsmooth(1 − αsmooth)
〉

c→ f

〉
f→c

(21)

This additional smoothing procedure diffuses the variable κ f away from the interface. Finally, the256

interface curvature at the face centres κ f inal is calculated using a weighted interpolation method that is257

suggested by Renardy and Renardy [37]:258

κ f inal =

〈
κs,i
√
αsmooth(1 − αsmooth)

〉
〈√

αsmooth(1 − αsmooth)
〉 (22)

where the interface curvature κ f inal is obtained at face centres.259

2.3. Sharpening Scheme (Explicit)260

Recalling Eq. 6, the surface tension forces are calculated at the face centres based on the following261

equation:262

fs = (σκδs) f η̇s = σκ f inalδs f (23)

In order to control the sharpness of the surface tension forces, the delta δs is calculated from a sharpened263

indicator function αsh as δs = ∇⊥f αsh, where ∇⊥f denotes the gradient normal to the face f . In Eq. 23 the264

surface tension force term is non-zero only at the faces across which the indicator function αsh has values.265

The αsh represents a modified indicator function, which is obtained by curtailing the original indicator266

function α as follows;267
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αsh =
1

1 −Csh

[
min

(
max(α, 1 − Csh

2
), 1 − Csh

2

)
− Csh

2

]
(24)

where Csh is the sharpening coefficient. From Eq. 24 one can notice that, as the sharpening coefficient (Csh)268

value increases, the unphysical interface diffusion decreases (i.e., it limits the effect of unphysical values269

at the interface, by imposing a restriction on alpha -α- as demonstrated). A zero value of Csh will lead to270

the original CSF formulation, while as Csh value increases the interface becomes sharper. As expected, the271

continuous -αsmooth- approach has a smooth (and diffused) transition across the interface, whereas the sharp272

−αsh− approach has a more abrupt transition with larger extremes. At high values of Csh (0.5 to 0.9), Eq.273

24 limits the indicator function -α- where values between (0 to 0.4) are summed to zero and values between274

(0.6 to 1) are summed to be one. This implementation introduces a sharper approach of the surface tension275

forces as discussed by Aboukhedr et al. [48]. Values in the range of (0.5) Csh were observed to give the best276

results for the most of our test cases.277

2.4. Capillary Pressure Jump Modelling278

In order to avoid difficulties associated with the discretisation of the capillary force fc, rearrangement of279

the terms on the right hand side of the momentum equation is conducted following the work of [47], where280

Eq. 2 is rewritten in terms of the microscopic capillary pressure pc:281

D
Dt

(ρu) − ∇ · T = −∇pd + f ′, (25)

f ′ = ρg + fs − ∇pc (26)

where the dynamic pressure is defined as pd = p − pc. This approach includes explicitly the effect of282

capillary forces in the Navier-Stokes equations and allows for the filtering of the numerical errors related to283

the inaccurate calculation of capillary forces. Considering a static fluid configuration for a two phase flow,284

the stress tensor reduces to the form
(
n · τ · n = −p

)
, and the normal stress balance is assumed to have the285

form of
(
pc = σ∇ · n) [49]. Then, the pressure jump across the interface is balanced by the curvature force286

at the interface.287
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∇ · ∇pc = ∇ · fs (27)

Assuming that pressure jumps can sustain normal stress jumps across a fluid interface, they do not288

contribute to the tangential stress jump. Consequently, tangential surface stresses can only be balanced by289

viscous stresses. Therefore one can apply a boundary condition of:290

δpc

δns
= 0 (28)

where ns is the normal direction to the boundaries. By including this set of equation to the Navier-Stokes291

equations, one can have a better balancing of momentum, hence filtering the numerical errors related to292

inaccurate calculations of the surface tension forces.293

2.5. Filtering numerical errors294

As the result of the numerical unbalance discussed in the previous sections when modelling the move-295

ment of a closed interface, it is difficult to maintain the zero-net capillary force, while modelling the move-296

ment of the interface. Hence it is difficult to decrease the errors in the calculation of capillary forces to zero297

∮
fs · As = 0 where As is the interface vector area. Raeini et al. [47] proposed as a solution to filter the298

non-physical fluxes generated due to the inconsistent calculation of capillary forces based on a user defined299

cut-off. The cut-off uses a thresholding scheme, aiming to filter the capillary fluxes (φ = |S f |( fs − ∇⊥f pc))300

and eliminate the problems related to the violation of the zero-net capillary force constraint on a closed301

interface. The proposed filtering procedure explicitly sets the capillary fluxes to zero when their magnitude302

is of the order of the numerical errors. The filter starts from setting an error threshold as:303

φthreshold = U f | fs|avg|S f | (29)

where φthreshold is the threshold value below which capillary fluxes are set to zero and | f |avg is the average304

value of capillary forces over all faces. The filtering coefficient U f is used to eliminate the errors in the305

capillary fluxes. Here a different U f is used, so for different cases the U f value will be set, which implies306

that the capillary fluxes are set to zero. After selecting the threshold, the capillary flux is filtered as:307
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φ f ilter = |S f |( f − ∇⊥f pc) − max(min(|S f |( f − ∇⊥f pc), φthreshold),−φthreshold) (30)

Using this filtering method, numerical errors in capillary forces causing instabilities or introducing large308

errors in the velocity field are prevented. By using the aforementioned filtering technique, the problem of309

stiffness is found to be reduced by eliminating the high frequency capillary waves when the capillary forces310

are close to equilibrium with capillary pressure. Consequently, it allows larger time-steps to be used when311

modelling interface motion at low capillary numbers312

3. Algorithm Implementation313

The modelling approach for compression has been implemented using the OpenFOAM- Plus finite314

volume library [16], which is based on the VoF-based solver interFoam [50]. No geometric interface recon-315

struction or tracking is performed in interFoam; rather, a compressive velocity field is superimposed in the316

vicinity of the interface to counteract numerical diffusion as already discussed in section 2.1. In the original317

VoF-based solver (interFoam), the time step is only adjusted to satisfy the Courant-Friedrichs-Lewy (CFL)318

condition. A semi-implicit variant of MULES developed by OpenFOAM is used here which combines op-319

erator splitting with application of the MULES limiter to an explicit correction. It first executes an implicit320

predictor step, based on purely bounded numerical operators, before constructing an explicit correction on321

which the MULES limiter is applied. This approach maintains boundedness and stability at an arbitrarily322

large Courant number. Accuracy considerations generally dictate that the correction is updated and applied323

frequently, but the semi-implicit approach is overall substantially faster than the explicit method with its324

very strict limit on time-step. The indicator function is advected using Crank-Nicholson schemefor half of325

the time step using the fluxes at the beginning of each time step. Then the equations for the advection of the326

indicator function for the second half of the time step are solved iteratively in two loops. The discretised327

phase fraction (Eq. 11) is then solved for a user-defined number of sub-cycles (typically 2 to 3) using the328

multidimensional universal limiter with the [MULES] solver. Once the updated phase field is obtained, the329

algorithm enters in the pressure-velocity correction loop.330
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4. Results, Validation and Discussion331

In the following sections, numerical simulations are presented for a range of benchmark cases that332

assess the performance of the proposed model. As a first benchmark case, a stationary single droplet and a333

pair of droplets (in the absence of gravity) have been considered. The convergence of velocity and capillary334

pressure to the theoretical solution is demonstrated. This test case assesses the performance of solvers in335

terms of spurious currents suppression. Then two other cases, commonly used in the literature, namely336

the Notched disc in rotating flow Zalesak [51] and the Circle in a vortex field Roenby et al. [34], Rider337

and Kothe [42] are examined. Finally, a more indicative example of flows through narrow passages is338

considered. This includes the generation of millimetric size bubbles in a T-junction. For the T-junction case,339

the prediction of any non-smoothed and diffused interface is accompanied by the development of spurious340

velocities resulting in unphysical results in comparison with the available experimental data. Calculations341

with the standard VoF-based solver of OpenFOAM (interFoam) are also included for completeness.342

4.1. Droplet relaxation at static equilibrium343

When an immiscible cubic ’droplet’ fluid is immersed in fluid domain (in the absence of gravity), surface344

tension will force the formation of the spherical equilibrium shape. The force balance between surface345

tension and capillary pressure should converge to an exact solution of zero velocity field. The corresponding346

pressure field should jump from a constant value p0 outside the droplet to a value p0 + 2σ/R inside the347

droplet. Modelling the relaxation process of an oil droplet (D0= 30 µm) in water at static equilibrium serves348

as an initial demonstration case for testing the suggested methodology, at a mesh resolution of (60x60x60).349

The fluid properties of the background phase (water) density ρ1 is 998 kg/m3 , and the viscosity ν1 is350

1.004e-6 m2/s, while the droplet phase (oil) densityρ2 is 806.6 kg/m3, and the viscosity ν2 is 2.1e -6 m2/s,351

and surface tension of 0.02 kg/s2.These values result to ( ∆Pc = 2σ
R = 2666Pa). The calculation set up352

includes a single cubic fluid element patched centrally to the computational domain and it is allowed to353

relax to a static spherical shape as shown in Fig. 2. It has been shown in the literature [52] that under these354

conditions and depending on the accuracy of the interface tracking/capturing scheme, non-physical vortex-355

like velocities may develop in the vicinity of the interface and can result in its destabilization. Tables 1 and 2356

demonstrate the different controlling parameters that have been tested. The main testing parameters shown357
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in the table are: (i) the flux filtering percentage U f as presented in Eq. 29, (ii) the number of smoothing358

loops n as presented in Eq. 20, (iii) the sharpening coefficient Csh as presented in Eq. 24 and finally (iv)359

the compression coefficient Ccompr. as presented in Eq. 12. Each series of test cases is designed to examine360

the effect of the mentioned models on parasitic currents and pressure jump calculation accuracy. Cases (S)361

examine the effect of smoothing loops number in the absence of interface sharpening and filtering. Cases362

(A) are designed to study the effect of error filtering percentage in the absence of smoothing loops and363

interface sharpening. Cases (B) examine the combined effect of filtering and smoothing in the absence364

of interface sharpening, while cases (SE) and (SF) are designed to test the combined effect of smoothing365

and filtering in the presence of interface sharpening and interface compression, respectively. The adaptive366

compression scheme introduced in the previous section, is not activated in this case in order to investigate367

the effect of different pre-specified compression levels on the parasitic current development.368

Figure 2: Computational domain for modelling static droplet, (left) initial condition a cube of size D0 = 30 µm, and (right) static
shape of droplet. Mesh size R/δx = 15 at t = 0.0025 s.

U f % n (Eq. 20) U f % n Filter U f % n (Eq. 20)
Case S1 0 2 Case A1 0.01 0 Case B1 0.05 2
Case S2 0 5 Case A2 0.05 0 Case B2 0.05 5
Case S3 0 10 Case A3 0.1 0 Case B3 0.05 10
Case S4 0 20 Case A4 0.2 0 Case B4 0.05 20

Table 1: Case set-up testing the influence of smoothing and capillary filtering values (U f % and n) without the effect of sharpening
or compression coefficients (Csh and Ccomp are set to zero)

The maximum velocity magnitude in the computational domain is presented as a function of various369

numerical parameters. If inertial and viscous terms balance in the momentum equation then parasitic veloc-370
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U f % n (Eq. 20) Csh (Eq. 24) Ccomp

Case SE1 0.05 10 0.1 0
Case SE2 0.05 10 0.5 0
Case SE3 0.05 5 0.1 0
Case SE4 0.05 5 0.5 0
Case SF1 0.05 10 0.5 0.5
Case SF2 0.05 10 0.5 1
Case SF3 0.05 10 0.5 2
Case SF4 0.05 10 0.5 3

Table 2: Case set-up testing the influence of smoothing and capillary filtering values (U f % and n) including the effect of sharpening
or compression coefficients

ities should be zero. However, the CSF technique introduces an unbalance by replacing the surface force by371

a volume force which acts over the small region surrounding the continuous phase interface. The surface372

force suggested by Brackbill et al. [8] includes a density correction as 1/(We ρ
〈ρ〉κn) for modelling systems373

where the phases have unequal density, where ρ is the local density and 〈ρ〉 is the average non-dimensional374

density of the two phases. Including these two variables does not affect the total magnitude of force applied,375

but weights the force more towards regions of higher density. This tends to produce more uniform fluid ac-376

celerations across the width of the interface region. Such a force is irrotational and so it can be represented377

as the gradient of a scalar field. Referring to the momentum equation 2 the surface tension force has to378

be precisely balanced by the pressure gradient term, with all velocity dependent terms, and thus velocities,379

being zero. The commonly used VoF numerical implementation of this system differs from this ideal im-380

plementation of α, which when discretised represents the volume fraction integrated over the dimensions381

of a computational mesh cell and varies by a small amount in the radial direction. This results in n-(the382

normal to the interface) not being precisely directed in the radial direction, κ value varying slightly and the383

complete interface volume force having a rotational component. The rotational component of the surface384

tension force cannot be balanced by the irrotational pressure gradient term. So it must be balanced instead385

by one or more of the three other velocity dependent terms. As these velocity terms (inertial transient, in-386

ertial advection and viscous) all require non-zero velocities if they themselves are to be non-zero, spurious387

currents develop. Looking into the parasitic velocity magnitude for the standard (interFoam) solver during388

the relaxation period (Fig. 3a), parasitic velocities are high and depend on the compression level. As the389

value of Ccompr. increases, the maximum velocity also increases. This might appear to be counter intuitive390
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since increased compression should result in sharper interfaces, nevertheless, in this work the smooth α field391

is only used for accurate curvature calculation, but for the rest of the equations the sharpened field had been392

used curvature κ and the normal vectors. However the sharper the interface the more numerical challenging393

becomes the calculation of derivatives. Fig. 3a indicates this paradox while Figure 3b presents a graphical394

explanation. It can be seen that as Ccompr. increases then vortex like structures develop randomly around the395

interface that prevent the droplet from relaxing to equilibrium.396

(a) (b)

Figure 3: (a)Evolution of maximum velocity during droplet relaxation using the standard (interFoam) solver with two different
interface compression (Ccompr.).(b) values Snapshot of the interface shape after the relaxation of the oil droplet using the standard
(interFoam). Velocity vectors near to the interface for different interface compression values are presented.

Testing the smoothing effect presented in Eqs. (19, 20 and 21) using the modified solver by varying397

the number of smoothing loops (n) as shown of Table (1) is also performed in the presented sub-section.398

The mentioned set-up in cases S1,S2,S3,S4 is used to investigate the effect of smoothing loops on the399

parasitic currents, isolated from the other examined controlling parameters. It is evident from Fig. 4e that400

by increasing the number of smoothing loops, the magnitude of the parasitic currents decreases. However,401

it should be pointed out that this reduction of parasitic currents, comes at the cost of a corresponding402

increase in the interface region thickness. Increasing the smoothing loops to 20, the interface thickness403

increases almost 4 times (6 cells) and parasitic currents tend to develop again and increase by time at a404

certain point after the relaxation of the droplet. The effect of varying the coefficient U f for filtering the405

capillary forces parallel to the interface (see Eq. 30) is revealed from cases A1 to A4 of Table 1; a decrease406

of the parasitic currents due to the wrong flux filtering near to the interface can be noticed. In the absence407

of smoothing loops and just changing the filter value U f , a significant decrease of the parasitic currents408

is observed as shown in Fig. 4b. Moreover, an optimum decrease in parasitic currents using a value of409

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

U f = 0.05 is observed (Table 1). The decrease of parasitic currents magnitude in this case is a combination410

of the interface treatment of Eq. 19 and the flux filtering without any smoothing loops being performed.411

Looking at Fig. 4b one can observe the asymmetric distribution of the velocity vector field with almost412

zero velocity inside the droplet. By examining the isolated filtering coefficient U f and smoothing loops413

n, the suggested framework has been noticed to reduce the spurious velocities, by almost four orders of414

magnitude, over a relatively long period. Cases B1 to B3 of Table 1 reveal the effect of combining both415

techniques (smoothing and flux filtering) for damping the parasitic currents; one of the parameters has kept416

constant - in this case, U f . Comparing cases (B2) presented in Figures 4c with the previously presented417

cases S and A, a major improvement in velocity reduction can be seen. In Fig 5 (B) a reduction of almost418

four orders of magnitude, when compared with the standard solver, has been achieved. By examining the419

deviation from the theoretical results compared to the standard interFoam using filtering and smoothing420

models as shown in Table 3, the suggested models reduce the maximum velocity field as seen in cases (S2421

and A1), then it start to increase, due to the excessive interface smoothing or the un-balanced capillary422

forces. Selecting the best smoothing and the filtering coefficient combination ( 5 < n < 10 and U f = 0.05),423

the effect of the sharpening model Eq. 24 is now examined. In Table 2 cases (SE1 to SE4), the Csh has424

been varied. Looking at Fig. 4a, a great reduction in the interface thickness can be seen reaching almost425

one grid cell. By combining the effect of sharpening, filtering and smoothing techniques, the same order426

of magnitude for parasitic currents with a significant decrease in interface thickness has been achieved. It427

has also been found that in SF1 case specifically, a very good balance in the velocity vector field with zero428

velocity inside the droplet (Fig. 5) has been achieved.429

As mentioned before, the literature review has revealed the negative effect of increasing the value of430

compression coefficient, since as the value of Ccompr. increases the magnitude of parasitic currents also431

increases. Using the same droplet test case, the effect of increasing the Ccompr. value on the parasitic current432

is demonstrated, but this time after applying the smoothing and flux filter models. It should be noted, the433

aforementioned adaptive compression model is not tested in this case yet, as it will be tested in the next434

section. In Table 2 cases (SF1 to SF4), the cases using the best combination of the previously mentioned435

smoothing and filter values coefficient are used with different compression values. The overall maximum436

velocity values are higher compared to those archived using no compression; nevertheless, these are still437
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Figure 4: Effect of varying model coefficients described in table 1 and 2 on parasitic currents, all figures are showing velocity
vector field at t =0.0024 sec. Figures are coloured with indicator function αS harp as yellow showing oil phase inside the droplet and
bright blue showing water outside the droplet

lower than those achieved using the standard solver. A swirling behaviour around the external diagonal438

direction of the droplet had been noticed as shown in Fig. 4b and 4c. The observed small swirling velocity439

confirms that the unbalanced surface tension force may increase parasitic currents at one specific location440

due to this swirling behaviour around the droplet interface. At the same time the effects of the smoothing441

and the filtering can have positive effect on decaying these swirling velocities.442

The behaviour of the droplet when different parameters are considered is important in assessing the443

impact that the parasitic currents have on the results. Similar simulations but with varying domain sizes444

(not included in this study) showed that when the parasitic currents were inertia-driven at the deformation445

phase they spread further across the computational domain. Depending on the nature of the simulation446

being considered, this may mean that inertia-driven parasitic currents have a greater impact on the results.447

Quantifying this effect would be difficult, as any integral measure of the parasitic currents – such as the448

total kinetic energy within the domain for example – would be dependent on additional geometrical factors,449

such as the domain size and interfacial area. While the form of the velocity field is changing with time450
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Figure 5: Effect of varying models coefficients presented in table 1 and 2 on maximum parasitic currents over period of time

one can conclude that the parasitic currents are dominated by inertia. The assessment of the effect of451

different parameters on the maximum velocity can also be presented in the percentage of divergence from452

the standard solver results as illustrated by Eq. 31;453

Eparasitic =
min(U)

min(U)Cα=2
(31)

where Eparasitic represents the error calculated by the min(U) to be the minimum velocity in the domain454

achieved using modified solver and min(U)Cα=2 to be minimum velocity using standard solver at Ccompr. = 2455

during the droplet relaxation over a long time interval. Table 3 shows that the magnitude of parasitic currents456

decreases to minimal in case (B2) where compression and sharpening are null; one can also achieve the same457

level of reduction in parasitic currents after applying sharpening, as in case (SE3) and with only a slight458

further increase by adding compression as in case (SF1). Table 3 shows numerically predicted pressure459

difference between the relaxed spherical droplet and the ambient liquid along the droplet diameter axis for460

each of the 20 simulated cases, in comparison with the theoretical value predicted from the Laplace equation461

[see [53] for more details]. The results are presented in terms of the errors in predicted capillary pressure,462

ErrorPc , defined as follows:463

Errorpc =
pc − (pc)theoretical

(pc)theoretical
/
(P − Ptheoretical

Ptheoretical

)
interFoamcalpha=2

(32)
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where pc is the calculated capillary pressure using the developed solver, and the P is the calculated pressure464

using the standard interFoam with compression value of two. The Errorpc presents the deviation of the cal-465

culated capillary pressure using the developed solver and the standard solver with respect to the theoretical466

capillary pressure. Equation 32 shows the reduction in error between the developed solver and the standard467

solver using compression (Ccompr. = 2). In all the presented cases, reduction in predicting the capillary468

pressure by 40% can be seen.469

S mooth S1 S2 S3 S4

Errorpc% 41.43 40.57 39.64 33.38
Eparasitic 0.0051 0.0053 0.0080 0.0112

Filter A1 A2 A3 A4

Errorpc% 45.55 45.51 45.51 45.63
Eparasitic 0.0031 0.0006 0.0011 0.0014

Filter B1 B2 B3 B4

Errorpc% 44.36 43.39 42.20 40.91
Eparasitic 0.0005 0.0006 0.0013 0.0032

S harp S E1 S E2 S E3 S E4

Errorpc% 43.04 45.14 43.97 46.11
Eparasitic 0.0008 0.0024 0.0007 0.0015

S harp S F1 S F2 S F3 S F4

Errorpc% 49.79 50.20 50.12 49.95
Eparasitic 0.0008 0.0045 0.0057 0.0067

Table 3: Reduction in predicted capillary pressure and parasitic currents compared to the standard interFoam

4.2. Interacting Parasitic Currents of two relaxing droplets470

In this section the effect of parasitic current interaction for the case of two stagnant droplets that undergo471

the same relaxation process is discussed. The same droplet properties as in the previous test case have been472

used (see Section 4.1). When two droplets are found in the same domain in close proximity, the parasitic473

currents may interact resulting in artificial movement of the droplets and eventually merging. Figure 7474

shows the velocity magnitude on the droplet represented by the 0.5 liquid volume fraction iso-surface. The475

same set of parameters are utilised as in (A2, B2, SE3 and SF1) cases mentioned in Tables 1 and 2. One476

can notice in Fig. 7a to Fig. 7c that the two droplets have merged to one big droplet located at the centre of477
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Figure 6: Computational domain showing two static droplets , (left) initial condition a cube of size D0 = 20 µm each, and (right)
static shape of droplet as two boxes.

the computational domain. In contrast Fig. 7d shows that the two droplets remain in their initial position as478

they should. This can be considered as a demonstration that optimising compression for one case does not479

necessarily mean that can offer optimum results for other similar cases and the solver should automatically480

adapt the needed compression. Hence, in the next sections that consider cases with higher deformation of481

the interface we are going to introduce the adaptive solver.482

4.3. Notched disc in rotating flow483

In addition to the static droplet test cases, the rotation test of the slotted disk, which is known as the484

Zalesak problem [51] has been tested. The Zalesaks circle disk is initially slotted at the centre (0.5,0,0.75) of485

a 2D unit square domain. The disk is subjected to a rotational movement under the influence of a rotational486

field that is defined by the following equations:487

u(x) = −2π(x − x0) (33)

w(z) = 2π(z − z0) (34)

where u(x), w(z) are the imposed velocity components. By applying this velocity, one complete rotation488

of the disk is completed within t = 1sec. For all simulations performed for this test case, a fixed time-step has489

been used, keeping the Courant number equal to 0.5. The initial disk configuration used for the simulation490
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(a) A2 (b) B2

(c) SE3 (d) SF1

Figure 7: Effect of combined flux filtering and smoothing in the presence of sharpening model on the interaction of parasitic
velocity field. All figures are showing the velocity field at t =0.0024 sec on the indicator function αS harp iso-contour = 0.5

is presented in Fig. 8. Three different mesh densities were used consisting of 64x64, 200x200 and 400x400491

cells, respectively.492

Figures 9 and 10 show the comparison between the standard solver using different compression (Ccompr.)493

values and the developed adaptive solver using different sharpening (Csh) values. In each plot, the exact494

initial and final interface shape is presented. In all the figures, the iso-contours values of indicator function495

alpha α of (0.1, 0.5 and 0.9) after one revolution of the disk are shown. The reason of presenting three496
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Figure 8: Schematic representation of two dimensional Zalesak’s Disk benchmark test case described at [54].

contour lines is to better explore the effect of the adaptive compression model on both the interface diffusion497

and the overall disk shape. For the coarse mesh (64x64) neither using the standard interFoam with three498

compression values (Ccompr. = 0, 1 and 4)), nor the three values for Csh, (Csh = 0.1, 0.5 and 0.9) for the499

adaptive modified solver, can provide a satisfactory interface representation. One can even notice that due500

to the large interface deformation and diffusion, the interface iso-contour of α = 0.9 at Fig. 9(a) has501

disappeared for the standard solver. Nevertheless, for the adaptive modified solver cases, the modified502

solver can keep the main geometrical features as seen in Figs. 10(a,d,g). By using high compression as503

in Fig. 9(g) , one can notice a reduction in the interface thickness, although a rather high deformation504

and corrugated shape of the final disk shape has been noticed. Comparing Fig. 9(g) to Fig. 10(g) one505

can notice the effectiveness of the adaptive model that preserves the geometrical outline of the disk while506

the sharpening model decreases the interface thickness. Moving to a finer mesh (200x200), high interface507

diffusion using the standard interFoam with no compression (Ccompr. = 0) Fig. 9(b) has been noticed. The508

higher grid resolution is not adequate to provide remedies to the previously mentioned deficiencies noticed509

in the coarser mesh using interFoam. The highly diffusive interface using the standard interFoam also did510

not maintain the 0.9 iso-contour making two oval shapes at the sides. For higher compression values Fig.511

9(e,h) although the disk shape is preserved by the standard solver, the interface is significantly deformed512

near the outer disk boundary. Use of the adaptive solver Fig. 10(b,e,h) shows better consistency for the shape513

regardless of the imposed sharpening level. Moreover, the adaptive compression eliminates any irregular514
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Figure 9: Zalesak disk after one revolution. Iso-contours for indicator function alpha (α = 0.1, 0.5 and 0.9) are plotted for the
standard interFoam using different compression values, together with the reference shape.

shapes compared to the standers solver. Figure 10(h) especially shows an excellent agreement with the515

original circular shape layout. This test case also demonstrates the role of the sharpening value Csh which516

can help in controlling the interface diffusion depending on the case under consideration. To examine our517

adaptive solver mesh dependency, the mesh has been doubled to 400x400. Even for this fine grid resolution518

case the standard solver gives inaccurate disk shape regardless of the compression value used, as none of519

them is adequate to balance the interface shape. A zero compression value using the standard interFoam520

preserves the characteristic shape for the first time (see Fig. 9(c), compared to Fig. 9(a,b)). For the higher521

compression values as in Fig. 9(f,i), high corrugated regions at the interface have been observed. Using the522

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 10: Zalesak disk after one revolution. Iso-contours of indicator function alpha sharp (αS h = 0.1, 0.5 and 0.9) are plotted for
the adaptive modified solver using different sharpening coefficients, together with the reference shape.

adaptive modified solver a better disk shape representation has been obtained, regardless of the sharpening523

coefficient value Csh (see Fig. 10(c,f,i)). Moreover, by using the three different sharpening coefficients Csh524

a thickness of approximately 1-2 cells has been preserved. Also a minimum difference between the fine and525

the extra fine grid in terms of interface thickness has been observed, and sharpening algorithm shows the526

perfect fit to the internal notch. These observations indicate that adaptive compression is less sensitive to527

tuning parameters such as the sharpening (see Eq. 24), which is not effective for coarse grid resolution.528

For completeness, results included in [20] are also shown. In [20] various commonly used interface529

capturing methods have been presented for the same test case; these include the standard compression530
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(a) Adaptive modified solver (b) CICSAM

(c) PLIC (d) FCT

Figure 11: Comparison between the used framework and available method reviewed by Gopala and van Wachem [20]. (a) is
showing modified solver with adaptive compressive scheme, (b) is showing the compressive interface capturing scheme for arbitrary
meshes (CICSAM), (c) is showing piecewise linear interface construction (PLIC) and (d) is showing flux-corrected transport FCT.
All presented in mesh a domain of 200 by 200

scheme used by OpenFOAM, the compressive interface capturing scheme for arbitrary meshes (CICSAM)531

employed by FLUENT commercial code, the piecewise linear interface construction (PLIC) and the flux-532

corrected transport (FCT)). In this test cases, the notched disk was a bit different than what is presented in533

the standard Zalesak [51] test case, yet it has the same overall characteristics. Looking at this comparison,534

one can relate and compare the overall behaviour for the different solvers as seen in Fig. 11. Nevertheless,535

one can spot out the difference in geometrical layout between our test case and the test cases presented in536

[19]; the mesh was kept the same as in [20] (200x200). By comparing the results from the developed solver537

to those reported in [20], it can be concluded that a good solution has been achieved.538
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4.4. Circle in a vortex field539

In this section, the solver performance is tested in a vortex flow as presented by Rider and Kothe [42]540

and Roenby et al. [34]. The aim of this benchmark test is to verify the ability of the model to deal with541

severe interface stretching. The test case includes an initially static circular fluid disk with radius of R =542

0.15 mm centred at (0.5,0,0.75) in a unit square domain. The disk is subjected to a vortex as shown in Fig.543

12. The axis of rotation is located in the centre of the field, and can be described by the following stream544

function;545

u(x, z, t) = cos((2πt)/T )(− sin2(πx) sin(2πz), sin(2πx) sin2(πz)) (35)

where u is the field rotational velocity and T is the period of the flow during rotation. Due to the flow546

direction, the disc is stressed into a long thread until time t = 4s forming a spiral shape. The interface547

thickness of the deformed disk shape, as well as the numerical diffusion of values located at the tail of the548

fluid body during its spiral motion are of interest. The results presented in Fig. 13 and 14 are for three549

different grid sizes using the standard (interFoam) and the newly developed adaptive modified solver. On550

each figure, the final interface shape is shown with three iso-contours values for the indicator function (α)551

of (0.1, 0.5 and 0.9) after one revolution of the disk (t= 4 s).552

Figure 12: Schematic representation the initial configuration of the shearing flow test with the value of the color function is one
inside the circle and zero outside

The standard solver failed to capture the full spiral shape after the disk rotation using the coarse mesh553
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Figure 13: Circle in a vortex field after one revolution. Iso-contours for indicator function alpha (α = 0.1, 0.5 and 0.9) is plotted
for the standard interFoam using different compression values, together with the reference shape.

(see Fig. 13(a,d,g)). Due to the very high diffusion and the absence of compression, iso-contours of 0.1 and554

0.5 volume fraction have disappeared from the computational domain (see Fig. 13 (a)). Using the adaptive555

modified solver the results are problematic as well especially for the tail as presented in Fig. 14(a,d,g). By556

using high sharpening value Fig. 13 (d,g) at low grid resolution to counter balance the numerical diffusion,557

tail snap-off at the spiral formation has been observed. Fragmentation or tail snapping off is evident in all558

figures.559

Moving to a finer grid (200x200) the behaviour of the two solvers becomes similar although some differ-560

ences can be noticed. The standard solver with no compression Fig. 13(b) suffers from high diffusion as seen561
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Figure 14: Circle in a vortex field after one revolution. Iso-contours of indicator function alpha sharp (αS h = 0.1, 0.5 and 0.9) is
plotted for the adaptive modified solver using different sharpening coefficients, together with the reference shape.

in the previous test cases where the (0.1) iso-contour disappears. As the compression value increases (see562

Fig. 13(e,h)) the standard solver shows early fragmentation at the tail or non-smooth interface. In contrast,563

the adaptive solver agrees with the expected spiral shape using different sharpening coefficients. Neverthe-564

less, with low sharpening value as shown in Fig. 14(b) early fragmentation with the 0.1 iso-contours lines565

loss has been observed. Increasing αS h to values greater than 0.5 (see Fig. 14(e,h)) provides an accurate566

spiral shape with minimum phase snapping at the tail. Good agreement using adaptive compression has567

been achieved in balancing the swirling tails compared to the wiggly interface appeared using the standard568

solver. One can notice that the smallest fragmentation at the spiral tail seems to be unavoidable by using any569
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applied sharpening algorithm, as also discussed by Sato and Ničeno [55] and Malgarinos et al. [26], espe-570

cially at regions where the liquid body becomes very thin. Fragmentation happens when the local interface571

curvature becomes comparable to the cell size. At this point, the iso-contours are not able to represent the572

significant interface curvature inside the cell any more. Iso-contours based on volume fraction advection,573

leads to errors in the estimate of the fragmented droplet motion similar to those reported by Černe et al.574

[56] and Roenby et al. [34]. As a final sensitivity test the grid size has been doubled (400x400), to examine575

the influence of the mesh size on the adaptive solver. Both solvers perform better with this high resolution576

grid, yet differences have been noticed as with the previous cases. As seen in Fig. 13(c) the standard (in-577

terFoam) using zero compression coefficient gives a better interface representation with less diffusion and578

stable tail. By introducing compression (see Fig. 13(f,i)) the spiral shape is maintained, although wiggly579

shapes emerge near the outer interface. Using the adaptive compression no significant change is noticed; by580

varying the sharpening value (Csh): as seen in Fig. 14(c,f,i), the results do not change. The results indicate581

that the balance between sharpening and compression is well achieved. Combining the developed solver582

with fine grid proves the proposed methodology independent of tuning parameters which is a very desirable583

feature within multiphase flows. Finally, it had been concluded that even by using medium quality mesh584

(i.e. 200x200), the adaptive solver can provide satisfying results for a wide range of sharpening coefficients.585

4.5. Bubble formation at T-junction586

The previous benchmark cases tested the suitability of the developed model to a range of idealised587

conditions. No significant topological changes occur and wettability effect is not present. Thus, further588

validation against experimental data for the case of formation of bubbles in a T-junction has been performed.589

This is a test case that involves wetting conditions at the wall as well as complex fluid interface topological590

changes through the breakup and generation of bubbles. The focus is to test the accuracy of our adaptive591

model in estimating the correct bubble shape and frequency as presented in the experiment of Arias et al.592

[57]. Full wetting conditions (θ = 0◦) at the main tube are used. Moreover, the contact angle imposed on593

the injection tube (see Fig. 16) has been taken from the corresponding flow images. A constant contact594

angle of θ = 25◦ for the left wall and θ = 45◦ for the right wall has been chosen to match the experiments.595

The connection between the two channels as well as the flow directions and geometrical representation are596

shown in Fig. 15.597
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Figure 15: Geometrical model boundaries and overall dimensions

Two different operating conditions, summarised in Table 4, have been selected for presentation. The598

velocities selected for comparison with our numerical simulations are also shown in table 4. The conditions599

used are carefully selected to simulate low capillary number and to show two different bubble size formation600

with fluid properties listed in Table .5.601

Figure 16: Contact angle at injection tube measured from experimental images

Table 4: Inlet velocities for liquid and gas, dimensionless numbers and regime expected

Case Ug(m/s) Ul(m/s) MaxRe MaxWe Exp.Regime

Case 1 0.242 0.318 32 1.4 S lug
Case 2 0.068 0.531 53 3.92 Bubble

For this test case the appearance of spurious numerical currents would create instability during the602

bubble formation process. These currents induce unphysical vortices at the interface, destabilising the603

simulations and strongly distorting the interface movement. Gravity acceleration constant was 9.8 m/s2,604

while the values of maximum Weber number
(ρDU2

σ

)
and the maximum Reynolds number

(ρDU
µ

)
were the605
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Table 5: Fluid physical properties

ρ(Kg/m3) ν(m2/s) σ(N/m)

Water properties at 25◦C 1000 1.004x10−6 0.07

Air properties at 25◦C 1.2 8.333x10−6 0.07

same as in the experiments and shown in table 4.606

Comparison of the results from the modified solver and the standard solver (interFoam) using different607

compression values against the experiments are shown in Figs. 17 and 18. Depending on the inlet velocity608

imposed, one should expect to reproduce different bubbles formation.609

Figure 17 presents the first bubble generation sequence as mentioned in case 1 Table 4. Using the610

standard solver, the slug formation is achieved only when adjusting the compression coefficient to the value611

of two as seen in Fig. 17d. Even in this case though the detached ligaments of the fluid appear to be more612

spherical than what the experiments indicate. Using the comparison value of one the standard solver failed613

to predict the interface snap-off as seen in Fig. 17c. In contrast looking at Fig. 17b it is noticed that the614

results obtained by the new adaptive model agree very well with the experiments in terms of both slug615

formation and snap-off time as seen in Fig. 17a. The adaptive framework predicts the interface snap-off616

correctly and minimises the overall parasitic currents. Moreover, the standard solver shows a considerable617

increase in parasitic velocity near the interface that may reaches eight times the magnitude of the flow618

velocity. The new solver achieved low parasitic currents during the snap-off events while maintaining an619

accurate sharp interface.620

Figure 18 presents bubble flow patterns obtained by imposing higher liquid velocity but lower gas621

velocity as in case 2 Table 4 in comparison to the previous case. Good agreement in terms of shape and622

patterns between experiments and all numerical simulations can be observed regardless of the solver used.623

It is worth mentioning though that looking at Figs. 18c, 18d when the standard interFoam solver is used,624

bubbles are generated at different frequencies based on the compression coefficient value. By comparing625

the two figures to the experimental Fig. 18a one can also notice that the snap-off time is delayed compared626

to the experimental results, while in Fig. 18b one can observe that using the developed adaptive solver,627

the snap-off time and the bubble generation frequency is matching well with the experiences. According628

to the experimental observations, bubble generation results from the breakup of a gas thread that develops629
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(a) experiments (b) Adaptive compression and Csh = 0.5

(c) interFoam Calpha = 1 standard solver (d) interFoam Calpha = 2 standard solver

Figure 17: Slug flow, (a) experiments and (b,c,d) numerical simulations. UL = 0.318 m/s and UG = 0.242 m/s. Time (ms) is
indicated in the upper right corner. Stream lines are coloured with velocity magnitude in all the figures.

after the T- junction. The explanation for the breakup is supported by the Plateau-Rayleigh instability as630

discussed by Ménétrier-Deremble and Tabeling [58] or by the effects of the flowing liquid from the tip of631

the thread to the neck where pinch-off occurs as presented by van Steijn et al. [59]. The surface tension has632

a stabilising effect and opposes any deformation of the interface tending to create a bubble. The snapping633
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(a) experiments (b) Adaptive compression snd Csh = 0.5

(c) interFoam Calpha = 1 (d) interFoam Calpha = 2

Figure 18: Bubble flow, (a) experiments and (b,c,d) numerical simulations. UL = 0.531 m/s and UG = 0.068 m/s. Time (ms) is
indicated in the upper right corner. Stream lines are coloured with velocity magnitude in all the figures.

events discussed by the previous literature are in agreement with the simulations presented here,since no634

unnatural pinch-off has been observed using the modified solver. On the other hand, a long thread of gas635

generated using (interFoam) is clearly seen in Fig. 17c.636
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Table 6: Error in Bubble generation frequency

S im. f requency(Hz) Error f

Case 1 (Modified solver) 190.47 4.7 %
Case 1 (interFoam Calpha = 1) 210.53 5.2 %
Case 1 (interFoam Calpha = 2) No Bubble generation 100 %
Case 2 (Modified solver) 200.00 1.9 %
Case 2 (interFoam Calpha = 1) 184.00 9.8 %
Case 2 (interFoam Calpha = 2) 179.21 12.15 %

In the previous section a qualitative comparison has been demonstrated using the standard solver and637

the developed solver against different variation of the control parameters. The validation has been extended638

to quantitatively compare the bubble generation frequency with experiments. To ensure regularity in the639

formation of bubbles, a train of bubbles is generated containing at least four of them. The generation640

frequency was estimated by measuring the time required to create the bubbles. The first bubble of each641

train, which was strongly dependent on the initial geometry was not considered. We quantify the accuracy642

of the bubble generation frequency using the following equation:643

Error f =
S im. f req − Exp. f req

Exp. f req
(36)

where the Sim. freq is the time calculated from the simulations in order to generate one bubble and Exp.644

freq is the time needed to produce one bubble in the actual experiment. Table 6 shows the error in the bubble645

frequency generation compared to the experimental data. For Case (1) although the qualitative results are646

very close between Fig. 17b and Fig. 17d, one can notice that the developed solver can achieve better647

accuracy in the in bubble generation frequency. In case (2) the simulation data are qualitatively similar to648

the experimental results.649

5. Conclusions650

A multiphase flow solver for interface capturing at low capillary number flows has been developed651

and evaluated against well established benchmark cases. Wide range of control parameters of the VoF652

methodology have been tested, aiming to shed light to their effect on physical properties of micro-scale653

flows as well as how they interlink. Five different test cases, chosen specifically to highlight the strengths654

and sensitivity of each model are presented; the best results obtained are summarized in Tables (7,8). The655
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present work was intended to overcome a natural tendency to evaluate numerical methods using only test656

cases close to the specific application for which they were designed in the first place. In our study a wide657

range of conditions have been tested, starting from static interfaces (static droplet), and moving to interface658

smearing (Zalesaks disk, circle in a vortex field ) and bubble generation using experimental (T-junction).659

As it has been demonstrated, although for all the test cases there is a unique optimum set of parameters660

relevant to sharpening and smoothing part of the method (U f % = 0.05, n = 10,Csh = 0.5 ), this is not661

the case for the Ccompr. term. The results presented here as well as in previous literature studies, indicate662

that this term is the most versatile coefficient depending on the physical characteristics of the case under663

consideration as well as the grid size. With the inclusion of adaptive compression this difficulty is waved664

and an a-priori selection of a value is not required. Even more importantly, it seems that the adaptive nature665

of the coefficient that controls the interface thickness counter balances the need for very fine grids. The666

combination of an adaptive compression VoF algorithm and a smoothing technique for the computation667

of the surface tension has been shown to give accurate results and satisfactory convergence. Advection668

tests in which interfaces are transported by an assumed external velocity field have been considered while669

a quantitative comparison with previous literature has been also made. In addition, bubble formation in670

a liquid flow was simulated by solving the Navier–Stokes equations coupled to the volume fraction field671

equation in a T-junction configuration for which experimental data are available. From the advection test672

cases, where the volume fraction equation is solved, the compression method as implemented in the solver673

interFoam failed to predict the results qualitatively. In contrast, the results obtained with the adaptive674

modified solver, adhere closely to literature. The used adaptive compression method proved to be mass675

conserving. In the future work, the proposed method will be used to model multiphase flow using real676

porous rocks produced from micro-CT images to characterize the effect of wettability on droplet impacting677

porous media.678
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Benchmark Control parameters Effective results Comments

Static
Droplet

Case SF1

• U f % = 0.05

• n = 10

• Csh = 0.5

• Ccompr. = 0.5

Advantage

• Interface presented in one grid
cell

Disadvantage

• Sensitive to compression co-
efficient value (Ccomp tested
0.5,1,2,3)

• Adaptive compression not used

Interacting
Parasitic
Currents of
two relaxing
droplets

Case SF1

• U f % = 0.05

• n = 10

• Csh = 0.5

• Ccompr. = 0.5

Advantage

• Interface presented in one grid
cell

• Droplets do not merge

Disadvantage

• Sensitive to compression co-
efficient value (Ccomp tested
0.5,1,2,3)

• Higher parasitic current than one
droplet test

• Adaptive compression not used
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Table 8: Benchmark summary highlighting the best set-up for a typical advection test cases, along advantages and disadvantages

Benchmark Control parameters Effective results Comments

Zalesaks
Disk

Fine Grid (200 x 200)

• U f % = 0.05

• n = 10

• Csh = 0.5

• Ccompr. =

Adptive

Advantage

• Not sensitive to grid size after
the 200x200

• Not sensitive to compression
value using the adaptive solver

Disadvantage

• By increasing Csh, interface be-
comes sharper yet not stable for
low parasitic current.

Circle in a
vortex field

Fine Grid (200 x 200)

• U f % = 0.05

• n = 10

• Csh = 0.5

• Ccompr. =

Adptive

Advantage

• Increase in accuracy regardless
of compression

Disadvantage

• Snapping at tail non avoidable
due to grid size effect.
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