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Probabilistic Programming Process Algebra

Anastasis Georgoulas1, Jane Hillston1, Dimitrios Milios1, and
Guido Sanguinetti1,2

1 School of Informatics, University of Edinburgh
2 SynthSys — Synthetic and Systems Biology, University of Edinburgh

Abstract. Formal modelling languages such as process algebras are
widespread and effective tools in computational modelling. However,
handling data and uncertainty in a statistically meaningful way is an
open problem in formal modelling, severely hampering the usefulness of
these elegant tools in many real world applications. Here we introduce
ProPPA, a process algebra which incorporates uncertainty in the model
description, allowing the use of Machine Learning techniques to incorpo-
rate observational information in the modelling. We define the semantics
of the language by introducing a quantitative generalisation of Constraint
Markov Chains. We present results from a prototype implementation of
the language, demonstrating its usefulness in performing inference in a
non-trivial example.

1 Introduction

Stochastic process algebras are an established tool for modelling and analysing
the behaviour of dynamical systems, combining theoretical elegance with a range
of attractive and practically useful features — compositionality, formal interpre-
tation of models and the ability to verify their behaviour using model-checking,
to list a few. The starting point for process algebras, as for many other formal
modelling methods, is a full specification of the system being modelled, both in
terms of interaction structure and of parameters quantifying the (infinitesimal)
dynamics of the system. It is increasingly clear, however, that such complete
knowledge is seldom achieved, and unattainable in a number of important appli-
cation domains. This problem is particularly acute in the biomedical field, where
parameters such as reaction rates are estimated from noisy measurements which
are often highly sensitive to the experimental conditions. How to quantify and
propagate this uncertainty in formal models is an open problem of fundamental
importance in any scientific application.

Constraining models from empirical observations is a very large and active
research field in machine learning and signal processing; however, these fields
usually work directly with low-level mathematical descriptions of the system,
which negate some of the major advantages of formal languages. Within the
process algebra community, attempts to address this problem have mostly used
greedy optimisation methods — the Evolving Process Algebra framework ([17,
18]), for instance, uses evolutionary computation algorithms to fit the parame-
ters and structure of a process algebra model. While this and similar approaches



(further discussed in Section 7) are valuable contributions, they do present prac-
tical and conceptual limitations. First and foremost, the optimization methods
used lack a statistical framework, and hence cannot quantify the uncertainty as-
sociated with their predictions. In general, optimisation methods return a single
optimal value of the parameters: this implies an assumption that measurements
are sufficient to completely remove uncertainty, clearly an untenable assumption.
Secondly, the learning and the modelling take place on separate levels, since the
modelling language itself does not really include the uncertainty about the sys-
tem. Thus, the model does not reflect our understanding, and inference is done in
an ad hoc manner, independently from the modelling. While this orthogonality
may appear attractive, it introduces a degree of conceptual dissonance between
what we try to capture and the way we represent it.

In this paper we aim to address these problems by introducing a formal
modelling language which directly incorporates observations (and the associated
uncertainty) and can leverage cutting-edge statistical machine learning tools to
perform inference and quantify uncertainty. We are inspired by recent progress
in probabilistic programming languages, which aim to perform inference by pro-
gramming; however, current probabilistic programming languages are all rela-
tively low-level. We introduce ProPPA, a Probabilistic Programming Process
Algebra; to our knowledge, this is the first time the probabilistic programming
paradigm is extended to a higher-level, formal system description language like
a process algebra. Note that the ability to perform inference from data qualita-
tively distinguishes our approach from general stochastic modelling methodolo-
gies such as stochastic process algebras, which simply incorporate uncertainty
in model evolution through the use of random variables to determine rates.

ProPPA is based on the stochastic process algebra Bio-PEPA [8], and inherits
many of its qualities. We show how to include uncertainty in the definition
of the language (Section 3), and propose an appropriate semantic model for
uncertain models (Sections 4 and 5). We adopt a modular approach to construct
our language, so that the core language is capable of adopting different machine
learning methodologies to perform inference from possibly very different types
of data. We demonstrate the power of this approach by performing inference in
a nontrivial example in Section 6.

2 Background

This section gives some information on the language on which ProPPA is based,
the frameworks and mathematical objects used for the definition of its semantics,
and the field of probabilistic programming from which we draw inspiration.

2.1 Process algebras and Bio-PEPA

Process algebras are a family of languages first used to model concurrent systems,
by specifying the system’s components and the actions that these may perform.
The formal nature of the languages allow one to reason about the behaviour of



the modelled system, such as verifying that undesirable states (configurations
of the system) are avoided or that simple properties hold. The sub-family of
stochastic process algebras (e.g. PEPA [15], IMC [14], EMPA [1]) extend this
framework by introducing time into the system and assuming that the time for a
transition to occur is an exponentially distributed random variable. The param-
eter of the distribution is called the rate of the transition, and, when multiple
transitions are possible, the probability of choosing a particular transition is
proportional to its rate. This is formalized through the concept of a Continuous
Time Markov Chain (CTMC), a mathematical description of the possible states
of the system and the transitions between them.

The description of a system in a process algebra can be used to implicitly
generate its state space, in the form of a labelled transition system (LTS). A LTS
is a graph whose nodes are the system’s states and whose edges are the possible
transitions between states, labelled with some information (e.g. what reaction
causes the transition or at what rate the transition occurs). Analysing the LTS
can give important insights into the behaviour of the system, such as whether
a state is reachable under certain conditions or within a specified time frame.
Verifying whether a system description satisfies such properties is the subject
of model checking algorithms and tools, with the properties to be checked often
being expressed in a temporal logic, such as CSL [2] or CTL [9].

Bio-PEPA [8] is a stochastic process algebra based on PEPA but designed for
the modelling of biological processes. In Bio-PEPA, system components (termed
species) are defined through their behaviour, that is, how they interact with each
other, reflecting a reagent-centric modelling style. The definition of a species
takes the form

A = (α1, k1)op1 + · · ·+ (αn, kn)opn where opi =↓, ↑,⊕,	 or �

which means that species A takes part in reaction αi with stoichiometry ki.
The different options for opi correspond to different roles of A in αi: reactant,
product, catalyst, inhibitor or generic modifier, respectively. These definitions
are composed using the choice operator (+) to describe species that can take
part in multiple reactions.

Each reaction has an associated rate law, which can be specified either as a
formula or using a predefined law (such as mass-action or Hill kinetics). Parame-
ters can be defined and used, for example, in kinetic laws or as initial concentra-
tions, but their values must be specified and are considered fixed. The language
results in a modular or compositional approach, wherein the behaviour of the
system emerges as a direct consequence of the behaviour of the species (without
the need to, for instance, explicitly write out ODEs or chemical equations for
reactions, as they can be automatically computed). This means modifications to
the model can be performed by changes to the “local” species definitions.

Formally, a Bio-PEPA system is defined as a tuple 〈V,N ,K,FR, Comp, P 〉,
where V is the set of compartments (locations) in the system; N is a set of quan-
tities associated with each species, such as its maximum concentration; K is the
set of parameters; FR is the set of rate laws; Comp is the set of sequential com-
ponents (species definitions); and P is the model component, which describes



how the various species cooperate with each other as well as their initial concen-
trations. An example of a model component comprising three species Ai with
initial quantities li is

A1[l1] BC
∗
A2[l2] BC

∗
A3[l3]

2.2 FuTS

The FuTS (state-to-function transition system) framework [20] is a way of de-
scribing semantics of process algebras. In a FuTS, the possible transitions from
a state s can be represented collectively as s

α
�→ f , where f is called the con-

tinuation and is a function over states. The value of f(s′) then gives some in-
formation (such as the rate) about the transition s

α−→ s′. Depending on the
codomain of the continuation functions, FuTS can represent different kinds of
behaviour and their associated information, such as non-determinism (continu-
ations take boolean values to denote possible next states), discrete time systems
(values in [0, 1] give transition probabilities) or continuous time systems (values
in R to denote transition rates). The notation [s1 7→ v1, s2 7→ v2, . . . , sn 7→ vn]
is shorthand for a function f such that f(si) = vi, i = 1 . . . n and f(s) takes
the zero value of its codomain (0 for real values, false for boolean etc.) for all
states besides the specified si. As ProPPA represents uncertainty using proba-
bility distributions, the FuTS style, which already makes use of functions, seems
a natural fit for expressing its semantics.

2.3 Constraint Markov Chains

Constraint Markov Chains (CMCs, [6]) are a generalisation of Discrete Time
Markov Chains in which the probability of transitioning from a given state to
another does not have a fixed value. Instead, the CMC specifies a constraint
that the values of the various transition probabilities must obey or, equivalently,
a set of acceptable values for them. Formally, a Constraint Markov Chain is a
tuple 〈S, o,A, V, φ〉, where:

– S is the set of states, of cardinality k.
– o ∈ S is the initial state.
– A is a set of atomic propositions.
– V : S → 22A

gives a set of acceptable labellings for each state.
– φ : S × [0, 1]k → {0, 1} is the constraint function.

The constraint function indicates whether a given set of transition probabilities
satisfies the constraints: φ(i, r) = 1 if and only if r = (r1, r2, . . . , rk) is an
acceptable vector of transition rates from state i.

As explained in [24], there are two ways of interpreting the uncertainty in the
transition probabilities, which give rise to different behaviours when simulating a
CMC. One way is to assume that the transition probabilities can change during
the run of the system, so that each time we visit a state we must choose new
values for them. This is referred to as Markov Decision Process (MDP) semantics.



Alternatively, under the Uncertain Markov Chain (UMC) semantics, we assume
that each probability has a constant (but unknown) value. In this case, the values
are fixed before the simulation and maintained throughout.

2.4 Probabilistic Programming

Probabilistic programming is a framework for reasoning about uncertain pro-
cesses in a statistically consistent manner. In a probabilistic program, uncertain
aspects of the system, such as unknown parameters, are treated as random vari-
ables and can be assigned probability distributions that express this uncertainty.
Additionally, one can specify observations of the system, from which informa-
tion about the unobserved aspects can be gleaned. In other words, the program
specifies a probability distribution, which can be viewed in two ways: one can
sample from it, essentially simulating the system; or, if one has additional in-
formation about the system, one can condition the distribution on this data,
inferring an updated distribution over the unknown variables that takes into ac-
count this new knowledge. Probabilistic programming offers an elegant approach
for treating uncertain systems in these two ways, automating the process to a
degree and eliminating the need for bespoke inference solutions, as the inference
algorithm can be configured and executed automatically based on the structure
of the program.

Previous work has focused mainly on integrating the paradigm into tra-
ditional programming languages, giving rise to frameworks like Church [13],
IBAL [21] and Infer.NET [19]. These languages, however, describe systems at a
low level: one must explicitly specify all the statistical dependences between the
different variables, yielding potentially large descriptions which are difficult to
manage. This limits the range of systems that can be modelled, with continuous-
time dynamical systems being particularly hard or even impossible to deal with.
We therefore advocate combining the principle of probabilistic programming
with a formal language like a process algebra, for a flexible, high-level frame-
work in which to model and analyse complex systems with uncertain aspects.

3 A Probabilistic Programming Process Algebra

The ProPPA syntax is based on Bio-PEPA, with the addition of two key fea-
tures that introduce aspects of probabilistic programming. The first concerns the
representation of uncertainty in the system. We should note that we are only
considering uncertainty in the kinetics, and assume that we fully know what
reactions each species can take part in. In Bio-PEPA, parameters can be used in
the definition of kinetic rate functions, but their values must be fixed. With this
in mind, we allow uncertain parameters, whose values are given as probability
distributions rather than concrete numbers. The second feature is a way of incor-
porating information about the behaviour of the system into the model. These
will be the observations, which may take the form of actual partial observations
of the state of the system (as a time series) or, more generally, could be any



observed function of the specific trajectory of the system (specified through a
temporal logic formula, for instance).

On a formal level, we will need to modify the definition of a Bio-PEPA sys-
tem (given previously in Section 2.1), mainly by reconsidering the role of the set
of parameters K. We extend the system definition in two ways, corresponding
to the two features described above. Firstly, since the uncertain quantities are
represented as parameters in the model, we extend the definition of a parameter
to include a distribution rather than a concrete value. These are the prior distri-
butions or priors over parameters, which express our belief about a parameter’s
values before seeing any data. The set of parameters K is then partitioned into
two subsets: Kc comprises the concrete parameters, while Ku contains the un-
certain ones, along with the priors associated with them. We write (k ∼ µ) ∈ Ku
if the parameter k is drawn a priori from the distribution µ. Importantly, the
functional rates FR can refer to any parameter in Ku as well as those in Kc; in
this sense, a functional rate can represent a family of functions.

Secondly, we add a new component O representing the observations. These
impose restrictions on the acceptable parameter values and modify our belief
about their distribution, as described in more detail in Section 5.4. Extending
the syntax to accommodate these features is straightforward. A ProPPA system
is therefore a tuple 〈V,N ,Kc,Ku,FR,O, Comp, P 〉, with the other components
retaining the meaning they have in Bio-PEPA. Following the terminology of [11],
we will also write a system as 〈T , P 〉 where T = 〈V,N ,Kc,Ku,FR,O, Comp〉 is
called the context.

3.1 A rumour spreading example

As an example of a ProPPA model, we will consider a population CTMC model
of rumour spreading over a network [10]; this consists of three types of agents
(Figure 1). A spreader (S) is someone who has already encountered the rumour
and is actively trying to spread it. When an ignorant (I) meets a spreader, the
ignorant also becomes a spreader. When two spreaders meet, one of them stops
spreading and becomes a blocker (R), reflecting the idea that only new rumours
are worth spreading. A blocker can then convert spreaders into other blockers.
The dynamics of the system can exhibit qualitatively different behaviours de-
pending on the parameter values: in particular, two possible steady state regimes
exist, where all agents are in blocker state, or where a blocker and an ignorant
population coexist.

I RSI
S S

R

Fig. 1: State transitions of a rumour-spreading agent. The arrow labels indicate the
type of agent that must be encountered for the corresponding transition to take place.



k_s = Uniform(0,1);1

k_r = Uniform(0,1);2

3

kineticLawOf spread : k_s * I * S;4

kineticLawOf stop1 : k_r * S * S;5

kineticLawOf stop2 : k_r * S * R;6

7

I = (spread,1) ↓ ;8

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;9

R = (stop1,1) ↑ + (stop2,1) ↑ ;10

11

I[10] BC
∗

S[5] BC
∗

R[0]12

13

observe(’trace’)14

infer(’ABC’)15

Fig. 2: ProPPA model of the rumour spreading example.

Figure 2 shows the description of the system in ProPPA for an initial popula-
tion of 15 agents. The behaviour of the different agents is described in lines 8-10:
line 8 says that the count of ignorants is decreased by 1 when the spread interac-
tion occurs, and the other types of agents are similarly defined by the changes to
their count through the various interactions. Line 12 shows the initial population
of each kind of agent; the cooperation BC

∗
means that the agents synchronise

on all shared reactions. We assume that these interactions happen at rates that
obey mass-action kinetics, i.e. they are proportional to the count of the agents
involved. We also assume that the rate constants for the spreader-spreader and
spreader-blocker interactions are the same (kr), while the spreader-ignorant in-
teraction has a rate constant ks; this is shown in lines 4-6. The definition of ks
and kr as uniformly distributed (lines 1-2) reflects our prior belief that, without
seeing any data, they are not biased towards any value in their domain, which
in this case we chose to be [0, 1]. We will use this model as a running example
for the rest of this paper; lines 14-15 are discussed in Section 5.4.

4 Probabilistic Constraint Markov Chains

As mentioned earlier, Bio-PEPA models can be mapped to CTMCs. In a CTMC,
every transition between states has a concrete rate, making this interpretation
unsuitable for a language with uncertainty, such as ProPPA. We must therefore
use a different object to define the semantics of our language, one that is more
suited to describing uncertain models, such as a CMC.

The way CMCs were first proposed (shown in Section 2.3) presents two limita-
tions. Firstly, they have been defined only for discrete-time systems, whereas we
are interested in modelling in continuous time. Their definition can be adapted
to the continuous-time domain through simple alterations which are presented



below. Secondly, while a CMC defines the set of possible values for a rate, it
gives no information on the relative likelihood of those values. We would like to
move from a purely non-deterministic to a probabilistic setting, where, instead
of a binary decision, we have quantitative information about our belief in the
plausibility of a value.

Based on the original definition, we can define a Probabilistic Constraint
Markov Chain as a tuple 〈S, o,A, V, φ〉, where:

– S is the set of states, of cardinality k.
– o ∈ S is the initial state.
– A is a set of atomic propositions.
– V : S → 22A

gives a set of acceptable labellings for each state.
– φ : S × [0,∞)k → [0,∞) is the constraint function.

The changes concern the constraint function and address the limitations de-
scribed. The constraints are now on rates rather than transition probabilities,
reflecting the shift to continuous time. Additionally, φ now describes a proba-
bility density function, therefore it takes values in R+ instead of {0, 1}, with
the additional restriction that

∫∞
0
· · ·
∫∞
0
φ(i, r)dr = 1 for every i ∈ {1, k}. The

resulting object is richer, and the additional information it can capture means
we can use Probabilistic CMCs to define the semantics of ProPPA models, as
explained in the next section.

5 ProPPA Semantics

We now describe the semantics of a ProPPA model, eventually mapping to a
Probabilistic CMC. The semantics of Bio-PEPA are given in terms of two re-
lations. The capability relation describes what transitions may occur between
states, without giving any quantitative information about the rates — in other
words, it gives the structure of the transition system. The stochastic relation uses
that information, as well as the definition of the kinetic functions, to provide the
rates of the transitions, thus completing the labelling of the transition system.

We have kept this two-step approach, and have in fact found the separation of
the two steps to be useful for our extension. Since there is no uncertainty in the
qualitative behaviour of the species, the capability relation remains unchanged
by our additions. We present both the existing capability and the new stochastic
relation in a uniform way using the FuTS framework.

5.1 Capability relation

To consider the capability relation as a FuTS, we use boolean-valued continu-

ations: P
l
�→c f means that P can transition to those states Q for which f(Q)

is true. For simple terms, there is at most one reachable state for any reaction,
as described by the rules below, where op is one of the modifier operators ⊕, 	
and �, and N is the maximum count for the species S:



PrefixReac (a, k) ↓ S(l)
(a,[S:↓(l,k)])
�−−−−−−−→c [S(l − k) 7→ true] k ≤ l ≤ N

PrefixProd (a, k) ↑ S(l)
(a,[S:↑(l,k)])
�−−−−−−−→c [S(l + k) 7→ true] 0 ≤ l ≤ N − k

PrefixMod (a, k) op S(l)
(a,[S:op(l,k)])
�−−−−−−−−→c [S(l) 7→ true]

(
k < l ≤ N if op = ⊕
k ≤ l ≤ N otherwise

The label (α,w) records two kinds of information: α is the reaction name,
while w is a list of roles, indicating how a species takes part in a reaction,
with what stoichiometry and at what initial count. The rules for the choice and
cooperation operators are simple:

P1

(a,w)
�−−→c f

Choice1

P1 + P2

(a,w)
�−−→c f

P2

(a,w)
�−−→c f

Choice2

P1 + P2

(a,w)
�−−→c f

P1

(a,w)
�−−→c f1 a /∈ L

Coop1

P1 BC
L

P2

(a,w)
�−−→c g1

P2

(a,w)
�−−→c f2 a /∈ L

Coop2

P1 BC
L

P2

(a,w)
�−−→c g2

P1

(a,w1)
�−−−→c f1 P2

(a,w2)
�−−−→c f2 a ∈ L

Coop3

P1 BC
L

P2

(a,w1::w2)
�−−−−−−→c g

where :: indicates concatenation of lists and we make the usual distinction ac-
cording to whether the reaction in question is shared between the cooperating
components. The functions g1, g2 and g are as follows:

g1(Q) =

{
f1(Q1) if Q = Q1 BC

L
P2

false otherwise
g2(Q) =

{
f2(Q2) if Q = P1 BC

L
Q2

false otherwise

g1(Q) =

{
f1(Q1) ∧ f2(Q2) if Q = Q1 BC

L
Q2

false otherwise

Finally, for completeness, we have a rule for named species definition:

P
(a,w)
�−−→c f Q

def
= P

Constant

Q
(a,w[P→Q])
�−−−−−−−→c f

where w[P → Q] means renaming all instances of P in w to Q.
For example, in the rumour-spreading network (Figure 2), we have that

S(2)
(stop2,[S:↓(2,1)])
�−−−−−−−−−−→c [S(1) 7→ true] and R(1)

(stop2,[R:↑(1,1)])
�−−−−−−−−−−→c [R(2) 7→ true]

from the prefix rules. By applying the cooperation rules, we can infer that

I(0) BC
∗
S(2) BC

∗
R(1)

(stop2,w)
�−−−−−→c

[
I(0) BC

∗
S(1) BC

∗
R(2) 7→ true

]
where w = [S :↓ (2, 1), R :↑ (1, 1)].



5.2 Stochastic relation

The capability relation is defined, as above, between species. The stochastic
relation, in contrast, is between whole systems and gives information on the rate
of transitioning from one system to another. In Bio-PEPA, the reaction rates
depend on the model’s parameters, and this dependence is also true in ProPPA.
This means that any uncertainty about the values of the parameters must lead
to uncertainty about the rates. The ProPPA stochastic relation, therefore, gives
a distribution over possible rates instead of a single value. If all the parameters
on which a particular rate depends are concrete, this will simply be a Dirac δ
distribution, i.e. one where all the probability mass is assigned to a single value.

When building the stochastic relation, we use both the capability relation,
which indicates if a state is reachable, as well as the system’s context T (see
Section 3), which holds information related to the reaction rates. The context
provides two pieces of information we require: the kinetic law for the reaction,
and the distribution of the uncertain parameters involved in that law. As the
rate normally depends on the concentrations of the species involved, we also need
this information, which is contained in the roles w, in the label of the capability
relation. The stochastic relation is defined by the rule:

P
(a,w)
�−−→c g

〈T , P 〉
a
�→s hg,w,T

As described above, the function h maps systems to distributions of rates:

hg,w,T (〈T ′, s′〉) =


δ(0) if T ′ 6= T
δ(0) if g(s′) = false
µ otherwise

According to this, transitions to systems with a different context or where the
species is not reachable can only occur at zero rate, i.e. never. We now show how
to derive the distribution over rates (µ above) in the non-trivial cases.

Assume the rate Y of a reaction depends on a parameter Θ and let Y = T (Θ)
express this dependence. We know, from the context, that Θ is distributed ac-
cording to a probability density function (pdf) fΘ. Y , being a transformation of
Θ, will also follow a distribution, whose pdf we denote fY . If the function T is
strictly monotonic, fY can be obtained through a simple change of variable:

fY (y) =
∣∣∣∣dT−1(Y )

dY

∣∣∣∣
Y=y

fΘ(T−1(y)) (1)

where T−1(y) is the (unique) value of the parameter Θ for which the rate is y.
To see why this is valid, let us first consider the case where T is strictly

increasing, which implies that the inverse function T−1 is well-defined and is
also increasing. The cumulative distribution function of Y is then:

FY (y) = P (Y ≤ y) = P (T (Θ) ≤ y) = P
(
Θ ≤ T−1(y)

)
= FΘ

(
T−1(y)

)



and the corresponding pdf is:

fY (y) =
dFY (y)
dY

∣∣∣∣
Y=y

=
dFΘ

(
T−1(Y )

)
dY

∣∣∣∣∣
Y=y

= fΘ
(
T−1(y)

) dT−1(Y )
dY

∣∣∣∣
Y=y

Considering the case where T is decreasing leads to the general result (1).
Once the stochastic relation has been constructed, it is then easy to build

a Probabilistic CMC that captures its behaviour by appropriately defining the
constraint function. To do so, we need the probability density of a vector of
rates, which can be obtained as the product of the densities for each individual
rate. The latter are given directly by the stochastic relation. Note that there can
be more than one reaction that leads to the same transition in the state space;
the total transition rate is then the sum of the rates of the individual reactions,
and the pdf of the sum of random variables is the convolution of their individual
pdfs. For a system with k states, then, the constraint function φ over the rates
rij of transitioning from state i to state j is given by:

φ(i, (ri1, ri2, . . . , rik)) =
k∏
j=1

fj(rij)

where 〈T , i〉
α
�→s fα and fj =

⊗
α fα(〈T , j〉) is the convolution described above.

5.3 Concretization

We now describe how the choice of UMC or MDP interpretation (discussed in
Section 2.3) affects the behaviour of the system. Essentially, in the UMC setting
we replace the prior distribution over each parameter with a Dirac δ distribution,
to reflect the fact that a value is chosen only once and remains fixed thereafter.
First we note that the concretization procedure only affects the context of a
system, so the corresponding transition relation will have the form T �→ gx(T ),
where T is a context (as before) and x can be umc or mdp. The corresponding
continuation functions for each scenario are defined as:

gumc(〈V,N ,Kc,Ku,FR,O, Comp〉)(T ′) =
∏
i

fi(vi) if T ′ = 〈V,N ,Kc, {ki ∼ δ(vi)},FR,O, Comp〉

0 otherwise

and

gmdp(T )(T ′) =

{
1 if T ′ = T
0 otherwise



5.4 Observations and inference

We have shown (Section 5.2) how the prior beliefs about the parameters in-
duce a distribution over rates, but we have so far assumed that no observations
are present. Observations represent new information which can affect our belief
about how likely different values are. Inference can then be thought of as a trans-
formation of the context, which takes the observations into account and updates
the distributions of the uncertain parameters accordingly. From a probabilistic
point of view, this corresponds to conditioning the prior distribution P (θ) on
the observed data D, obtaining the posterior distribution P (θ | D). The relation
between these quantities is given by Bayes’ Theorem:

P (θ | D) ∝ P (θ)P (D | θ)

where P (D | θ) is the likelihood of the data, a measure of how likely we are to
see these observations for a particular assignment of values to the parameters.

This view does not give any information on how to perform inference, how-
ever. Indeed, it is generally not possible to calculate the likelihood or the poste-
rior analytically, so approximations must be used. The specification of the lan-
guage allows for some freedom in the inference implementation; this approach
creates a modular framework that can employ different algorithms, some ex-
amples of which are given in the next section. The choice may depend in part
on the type of observations available, and here we focus on two possible ways
of specifying those: a time-series of measurements of the species in the system,
or a set of temporal logic formulae, which describe properties of the system’s
behaviour. A statement of the form infer(algorithm) in the model sets the
desired inference algorithm.

In line 14 of Figure 2, the observe statement refers to an external file which
holds our observations of the system. Line 15 specifies what inference algorithm
will be used.

6 Inference

In this section, we illustrate the capabilities of the language by showing some
ways we can perform inference on the model of Figure 2.

6.1 Inference from time-series observations

We first assume that our observations are measurements of the species at dif-
ferent times during a run of the system. We can use an Approximate Bayesian
Computation (ABC) [25] algorithm that takes into account both the prior be-
liefs and the data to obtain the posterior distribution over parameter values.
ABC provides an efficient way of exploring the parameter space and keeping
those values which better fit the data, and is particularly useful in cases where
the likelihood is unknown or intractable to calculate. The algorithm returns an
approximation to the posterior distribution as a (multi)set of parameter samples.
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Fig. 3: Results from the two inference methods: (a) accepted samples after running
ABC; (b) contours of the Laplace approximation of the posterior when using formulae
as inputs (the outer ring corresponds to the 98th quantile). The dots show the true
values.

For this experiment, we simulated the system with ks = 0.5, kr = 0.1, and
used ten points from the resulting trajectory as the input time-series. We gath-
ered 100,000 parameter samples using ABC in approximately 20 seconds, plotted
in Figure 3a. We can see the distribution of kr is centred on its true value. It is
also narrower than that of ks, indicating that the behaviour of the system is not
as sensitive to the latter. Simulating the system for values of ks in [0.3, 1.0] shows
that its behaviour does not change much in this range, validating our results.
Even with this wide variance, however, the posterior differs from the prior in
that it assigns little or no probability to values of ks under 0.3, which produce
significantly different behaviour to the one in the input observations.

6.2 Inference from specification

We now examine the possibility of inference from specification in the form of
logical constraints, rather than quantitative observations in the form of time-
series. In many cases detailed quantitative information is not readily available,
whereas we have an idea of how the model should behave with respect to certain
properties. We follow the framework of Bortolussi & Sanguinetti [4], in which
observations are satisfaction values of formulae specified in a suitable temporal
logic (e.g. MiTL). This method yields an estimate for the parameter value that
optimises the posterior distribution (Section 5.4); we can then use this to ap-
proximate the whole posterior with a Gaussian distribution by employing the
Laplace approximation.

We have considered the following three properties, expressed in MiTL:

– G[3,5](I > 0): There are still ignorants at all time points between time 3 and
5, i.e. the rumour has not reached everyone in the population.



– G[0.5,1](R ≥ S): Between time 0.5 and 1, the blockers are always more than
the spreaders.

– (F[0,1](S ≥ 7.5))∧ (G[1,2](S ≤ 3.75)): The proportion of spreaders reaches or
exceeds 50% of the population before time 1, and between time 1 and 2 the
spreaders are always less than or equal to 25% of the population.

In order to produce the input specification data, we simulated the system 100
times after fixing ks = 0.5, kr = 0.1 as previously. After running the optimisation
algorithm using this input and the priors from the model, we obtained estimates
of 0.5236 and 0.1098 for ks and kr respectively. Figure 3b depicts the contours
of the posterior Gaussian distribution over the parameters, given via Laplace
approximation. Similarly to the previous section, the model appears to be less
sensitive to ks compared to kr. This is reflected in their standard deviations, as
given by the Laplace approximation; these are 0.0288 and 0.0199 respectively,
meaning that the approximate distribution captures the increased uncertainty
regarding ks.

7 Related work

Some previous work has explored parameter estimation methods for formal mod-
els. The Evolving Process Algebra [17] framework uses genetic algorithms to
find parametrizations of models written in the PEPA language, such that the
behaviour of the model matches an observed time-series. It has been further ap-
plied to optimising the structure of Bio-PEPA models, going beyond parameter
search [18]. The work in [23] deals with parameter estimation for the Calculus
of Wrapped Components, employing a different search algorithm. The problem
has also been considered in the case of BIOCHAM in [7], where the space of
possible parameters is searched exhaustively to find values giving a good fit.

The somewhat related problem of reasoning about the behaviour of incom-
pletely specified process algebra models, rather than inferring their parameters,
is dealt with in [3]. Brim et al. [5] propose a method of approximating quanti-
tative model checking results over an entire parameter space as an alternative
to parameter estimation. Although not directly relevant to inference, the work
in [16] is another example of combining machine learning with formal modelling,
presenting a Bayesian approach to statistical model checking.

With regards to probabilistic programming, as mentioned previously, lan-
guages like Church [13], IBAL [21] and Infer.NET [19] are not particularly suited
to modelling complex dynamical systems. A language for describing continuous-
time systems has been proposed in [22], but still lacks the formal features of
a process algebra. An initial attempt to apply probabilistic programming to
continuous-time models of biological systems also used a lower-level description
language [12].



8 Conclusions

We have presented a process algebra that incorporates elements of probabilistic
programming, the first such attempt at combining the two fields. This approach
integrates uncertainty and observations into the system description, allowing us
to model systems for which we have incomplete knowledge and giving us access
to techniques from machine learning for inferring the unknown parameters.

The new features, while affecting the syntax of the language only minimally,
significantly extend its expressivity. Additionally, our system is modular and flex-
ible in the choice of inference algorithm. The application of two such algorithms
on an example gives promising results for the effectiveness of our approach.

An interesting question for future work is whether the observations can be
further integrated into the semantics of the language — for instance, whether
the specification of a system can let us reject some transitions when building
the underlying transition system. We are also interested in examining other
benefits afforded by the use of a formal language, such as the description of
equivalences and how they can be adapted to this probabilistic programming-
like setting. Furthermore, we plan to explore more inference algorithms and test
our framework on larger systems.
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