671 research outputs found

    MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Get PDF
    Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate

    Linking Influenza Virus Tissue Tropism to Population-Level Reproductive Fitness

    Get PDF
    Influenza virus tissue tropism defines the host cells and tissues that support viral replication and contributes to determining which regions of the respiratory tract are infected in humans. The location of influenza virus infection along the respiratory tract is a key determinant of virus pathogenicity and transmissibility, which are at the basis of influenza burdens in the human population. As the pathogenicity and transmissibility of influenza virus ultimately determine its reproductive fitness at the population level, strong selective pressures will shape influenza virus tissue tropisms that maximize fitness. At present, the relationships between influenza virus tissue tropism within hosts and reproductive fitness at the population level are poorly understood. The selective pressures and constraints that shape tissue tropism and thereby influence the location of influenza virus infection along the respiratory tract are not well characterized. We use mathematical models that link within-host infection dynamics in a spatially-structured human respiratory tract to between-host transmission dynamics, with the aim of characterizing the possible selective pressures on influenza virus tissue tropism. The results indicate that spatial heterogeneities in virus clearance, virus pathogenicity or both, resulting from the unique structure of the respiratory tract, may drive optimal receptor binding affinity-that maximizes influenza virus reproductive fitness at the population level-towards sialic acids with α2,6 linkage to galactose. The expanding cell pool deeper down the respiratory tract, in association with lower clearance rates, may result in optimal infectivity rates-that likewise maximize influenza virus reproductive fitness at the population level-to exhibit a decreasing trend towards deeper regions of the respiratory tract. Lastly, pre-existing immunity may drive influenza virus tissue tropism towards upper regions of the respiratory tract. The propo

    High seroprevalence of human herpesviruses in HIV-infected individuals attending primary healthcare facilities in rural South Africa

    Get PDF
    Seroprevalence data of human herpesviruses (HHVs) are limited for sub-Saharan Africa. These are important to provide an indication of potential burden of HHV-related disease, in particular in human immunodeficiency virus (HIV)-infected individuals who are known to be at increased risk of these conditions in the Western world. In this cross-sectional study among 405 HIV-infected and antiretroviral therapy naïve individuals in rural South Africa the seroprevalence of HHVs was: herpes simplex virus type 1 (HSV-1) (98%), herpes simplex virus type 2 (HSV-2) (87%), varicella zoster virus (VZV) (89%), and 100% for both Epstein-Barr virus (EBV) and cytomegalovirus (CMV). Independent factors associated with VZV seropositivity were low educational status and having children. Lack of in-house access to drinking water was independently associated with positive HSV-1 serostatus, whereas Shangaan ethnicity was associated with HSV-2 seropositivity. Increasing age was associated with higher IgG titres to both EBV and CMV, whereas CD4 cell count was negatively associated with EBV and CMV IgG titres. Moreover, IgG titres of HSV-1 and 2, VZV and CMV, and CMV and EBV were positively correlated. The high HHV seroprevalence emphasises the importance of awareness of these viral infections in HIV-infected individuals in South Africa

    Dolphin morbillivirus infection in different parts of the Mediterranean Sea

    Get PDF
    Morbillivirus were isolated from Mediterranean striped dolphins (Stenella coeruleoalba) dying along the coasts of Italy and Greece in 1991. They were antigenically identical to the morbilliviruses isolated from striped dolphins in Spain in 1990

    Emerging Marine Diseases: Climate Links and Anthropogenic Factors

    Get PDF
    Mass mortalities due to disease outbreaks have recently affected major taxa in the oceans. For closely monitored groups like corals and marine mammals, reports of the frequency of epidemics and the number of new diseases have increased recently. A dramatic global increase in the severity of coral bleaching in 1997-98 is coincident with high El Niño temperatures. Such climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases. Where documented, new diseases typically have emerged through host or range shifts of known pathogens. Both climate and human activities may have also accelerated global transport of species, bringing together pathogens and previously unexposed host populations

    Ultra-Fast Analysis of Plasma and Intracellular Levels of HIV Protease Inhibitors in Children: A Clinical Application of MALDI Mass Spectrometry

    Get PDF
    HIV protease inhibitors must penetrate into cells to exert their action. Differences in the intracellular pharmacokinetics of these drugs may explain why some patients fail on therapy or suffer from drug toxicity. Yet, there is no information available on the intracellular levels of HIV protease inhibitors in HIV infected children, which is in part due to the large amount of sample that is normally required to measure the intracellular concentrations of these drugs. Therefore, we developed an ultra-fast and sensitive assay to measure the intracellular concentrations of HIV protease inhibitors in small amounts of peripheral blood mononuclear cells (PBMCs), and determined the intracellular concentrations of lopinavir and ritonavir in HIV infected children. An assay based on matrix-assisted laser desorption/ionization (MALDI) - triple quadrupole mass spectrometry was developed to determine the concentrations of HIV protease inhibitors in 10 µL plasma and 1×106 PBMCs. Precisions and accuracies were within the values set by the FDA for bioanalytical method validation. Lopinavir and ritonavir did not accumulate in PBMCs of HIV infected children. In addition, the intracellular concentrations of lopinavir and ritonavir correlated poorly to the plasma concentrations of these drugs. MALDI-triple quadrupole mass spectrometry is a new tool for ultra-fast and sensitive determination of drug concentrations which can be used, for example, to assess the intracellular pharmacokinetics of HIV protease inhibitors in HIV infected children

    Evaluation of the Antiviral Response to Zanamivir Administered Intravenously for Treatment of Critically Ill Patients With Pandemic Influenza A (H1N1) Infection

    Get PDF
    A retrospective nationwide study on the use of intravenous (IV) zanamivir in patients receiving intensive care who were pretreated with oseltamivir in the Netherlands was performed. In 6 of 13 patients with a sustained reduction of the viral load, the median time to start IV zanamivir was 9 days (range, 4–11 days) compared with 14 days (range, 6–21 days) in 7 patients without viral load reduction (P = .052). Viral load response did not influence mortality. We conclude that IV zanamivir as late add-on therapy has limited effectiveness. The effect of an immediate start with IV zanamivir monotherapy or in combination with other drugs need to be evaluated

    Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds

    Get PDF
    Although extensive data exist on avian influenza in wild birds in North America, limited information is available from elsewhere, including Europe. Here, molecular diagnostic tools were employed for high-throughput surveillance of migratory birds, as an alternative to classical labor-intensive methods of virus isolation in eggs. This study included 36,809 samples from 323 bird species belonging to 18 orders, of which only 25 species of three orders were positive for influenza A virus. Information on species, locations, and timing is provided for all samples tested. Seven previously unknown host species for avian influenza virus were identified: barnacle goose, bean goose, brent goose, pink-footed goose, bewick's swan, common gull, and guillemot. Dabbling ducks were more frequently infected than other ducks and Anseriformes; this distinction was probably related to bird behavior rather than population sizes. Waders did not appear to play a role in the epidemiology of avian influenza in Europe, in contrast to the Americas. The high virus prevalence in ducks in Europe in spring as compared with North America could explain the differences in virus-host ecology between these continents. Most influenza A virus subtypes were detected in ducks, but H13 and H16 subtypes were detected primarily in gulls. Viruses of subtype H6 were more promiscuous in host range than other subtypes. Temporal and spatial variation in influenza virus prevalence in wild birds was observed, with influenza A virus prevalence varying by sampling location; this is probably related to migration patterns from northeast to southwest and a higher prevalence farther north along the flyways. We discuss the ecology and epidemiology of avian influenza A virus in wild birds in relation to host ecology and compare our results with published studies. These data are useful for designing new surveillance programs and are particularly relevant due to increased interest in avian influenza in wild birds
    corecore