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R E V I E W : M A R I N E E C O L O G Y

Emerging Marine Diseases—Climate Links and
Anthropogenic Factors

C. D. Harvell,1* K. Kim,1,2 J. M. Burkholder,3 R. R. Colwell,4,5 P. R. Epstein,6 D. J. Grimes,7 E. E. Hofmann,8 E. K. Lipp,9

A. D. M. E. Osterhaus,10 R. M. Overstreet,11 J. W. Porter,12 G. W. Smith,13 G. R. Vasta4

Mass mortalities due to disease outbreaks have recently affected major taxa in the
oceans. For closely monitored groups like corals and marine mammals, reports of the
frequency of epidemics and the number of new diseases have increased recently. A
dramatic global increase in the severity of coral bleaching in 1997–98 is coincident
with high El Niño temperatures. Such climate-mediated, physiological stresses may
compromise host resistance and increase frequency of opportunistic diseases. Where
documented, new diseases typically have emerged through host or range shifts of
known pathogens. Both climate and human activities may have also accelerated global
transport of species, bringing together pathogens and previously unexposed host
populations.

T he oceans harbor enormous biodiver-
sity by terrestrial terms (1), much of
which is still poorly described taxo-

nomically. Even less well known are the dy-
namics of intermittent, ephemeral, threshold
phenomena such as disease outbreaks. De-
spite decades of intense study of the biolog-
ical agents structuring natural communities,
the ecological and evolutionary impact of
diseases in the ocean remains unknown, even
when these diseases affect economically and
ecologically important species. The paucity
of baseline and epidemiological information
on normal disease levels in the ocean chal-
lenges our ability to assess the novelty of a
recent spate of disease outbreaks and to de-
termine the relative importance of increased

pathogen transmission versus decreased host
resistance in facilitating the outbreaks. Our
objectives here are to review the prevalence
of diseases of marine taxa to evaluate wheth-
er it can be concluded that there has been a
recent increase. We also assess the contribut-
ing roles of human activity and global cli-
mate, and evaluate the role of the oceans as
incubators and conveyors of human disease
agents.

Is There an Increase in Diseases
in the Ocean?
In the past few decades, there has been a world-
wide increase in the reports of diseases affect-
ing marine organisms (2, 3) (Table 1). In the
Caribbean, mass mortalities among plants, in-
vertebrates, and vertebrates have resulted in
dramatic shifts in community structure. Recent
outbreaks of coralline algae lethal orange dis-
ease and a coralline fungal disease have affect-
ed Indo-Pacific communities on unprecedented
scales. In the North Atlantic, frequency of mass
mortalities of marine mammals appears to be
increasing, particularly along heavily polluted
coastal areas, suggesting human activity as a
factor in disease dynamics. Ecologically and
economically important species from temperate
oceans, such as seagrasses, oysters, and sea
urchins, have also been affected by large-scale
epidemics. Although the frequencies of such
accounts are compelling, whether they are in-
deed “new” or are simply artifacts of improved
detection requires further evaluation.

Several criteria have been proposed (4 ) to
distinguish new diseases affecting humans.
Criteria applicable to disease of nonhuman
hosts include novelty of disease symptoms
and rapid increases in disease prevalence and
virulence. These criteria require either the
availability of historical baseline data or stan-

dard epidemiological measures of disease
level (that is, prevalence, incidence, viru-
lence). Although the increasing numbers of
unusual mass mortalities are suggestive, the
lack of additional information for most ma-
rine taxa greatly challenges our ability to
assess disease novelty. For a few taxa, how-
ever, the available data on the novelty of
disease symptoms (5) and/or host shifts of a
known pathogen present convincing evidence
of new diseases.

New symptoms. Marked by two large-
scale epidemics with significant community
level impacts, the Caribbean basin has
emerged as a disease hot spot. The virtual
eradication of Diadema antillarum (dominant
sea urchin) in the 1980s was one of the first
well-studied marine epidemics (6 ), although
the pathogen is yet to be identified. In some
locations, loss of this keystone herbivore con-
tributed to phase shifts from coral- to algae-
dominated reefs (7 ). Other dominants, like
the staghorn and elkhorn and corals, Acro-
pora spp., also were virtually eradicated at
many localities in the 1980s (8) by an un-
known agent from which they have yet to
recover. Also during the late 1980s at least
4000 ha of turtle grass, Thalassia testudinum,
died in Florida Bay (U.S.A.); an additional
23,000 ha were severely affected (9). Diseas-
es affecting benthic marine species such as
corals and seagrasses will have dispropor-
tionate impacts by altering habitat and eco-
system function. In spite of the impact, little
progress has been made in identifying the
causative agents for marine diseases or in
applying standard epidemiological methods
to assess impact or mode of transmission. Of
the dozen or so coral diseases currently de-
scribed for the Caribbean region, the identity
of the causative agent is known only for three
(10); nonetheless, the severity and novelty of
many of the disease symptoms suggest that
the diseases are indeed new. Three additional
lines of evidence support this view. First,
monitoring of coral diseases in the Florida
Keys indicates that there has been an increase
in the number of new diseases (11) (Fig. 1).
Second, because corals are long-lived and
many of the diseases are highly virulent (10),
current levels of disease prevalence, if they
had occurred in previous decades, would
have been detected. Finally, evidence from
the fossil record indicates that shifts in com-

1Ecology and Evolutionary Biology, Cornell University,
Ithaca, NY 14853, USA. 2Department of Entomology,
4112 Plant Sciences Building, University of Maryland,
College Park, MD 20742, USA. 3Botany Department,
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NC 27695, USA. 4Center of Marine Biotechnology,
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School, Boston, MA 02115, USA. 7Institute of Marine
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39566, USA. 8Center for Coastal Physical Oceanogra-
phy, Old Dominion University, Crittenton Hall, 768
West 52 Street, Norfolk, VA 23529, USA. 9Depart-
ment of Marine Science, University of South Florida,
St. Petersburg, FL 33701, USA. 10Erasmus University
Rotterdam, Institute of Virology, P.O. Box 1738, 3000
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munity structure due to disease are not com-
monplace on these coral reefs. The rapid
replacement of the coral Acropora cervicor-
nis with Agaricia in Belize (12) with Porites
in the Bahamas (13), taken as a “signature” of
epidemics, was absent from geologic cores
representing several thousand years of reef
development. These results suggest that the
current Agaricia and Porites replacements
were unique in the recent ecological history
of the Caribbean coral fauna.

In addition to diseases, there has been an
apparent increase in the frequency of reports of
toxic algal blooms in the last decade. Cetacean,
pinniped, and fish populations have been affect-
ed, often severely, by algal toxins and/or viral
epidemics (3, 14–16). Many toxic blooms in
the ocean have been attributed to dinoflagel-
lates, and more than 85 toxic species have been
identified (17). Harmful algal blooms appear to
have increased globally in the past several de-
cades (2, 14, 18). The toxic dinoflagellate Pfi-
esteria piscicida was originally isolated from an
outbreak at an aquaculture facility and has been
described as the causative agent of massive fish
kills along the Atlantic Coast of the United
States (19).

Host shifts. It appears that most new dis-
eases are not caused by new micro-organ-
isms, but rather by known agents infecting
new or previously unrecognized hosts. Evi-
dence for this is persuasive in studies of
morbilliviral diseases of marine mammals,
which indicate that some severe outbreaks
have been caused by introduction from ter-
restrial or other aquatic mammalian reservoir
species. For instance, canine distemper virus
(CDV) was thought to be introduced into
crab-eating seals in Antarctica by contacts
with infected sled dogs used during an ant-
arctic expedition (20). Similarly, CDV isolat-
ed from Lake Baikal seals (Phoca sibirica)
was genetically identical to CDV present in
domestic dogs in Siberia (21) suggesting that
the seal die-off was caused by direct or indi-
rect contacts with domestic dogs. A closely
related morbillivirus—phocine distemper vi-
rus (PDV)—that previously had not been rec-
ognized, was identified as the cause of anoth-
er mass mortality that occurred in the late
1980s among harbor seals (Phoca vitulina)
and grey seals (Halichoris gryphus) inhabit-
ing the coastal waters of northwestern Europe
(22). Soon after, infections with two other

newly recognized morbilliviruses, dolphin
morbillivirus (DMV) and porpoise morbilli-
virus (PMV), were shown to be the cause of
mass mortalities and disease outbreaks
among dolphins, porpoises, and other ceta-
cean species all over the world (23). PDV
was thought to be transmitted to the previ-
ously unexposed seals of northwestern Eu-
rope by infected harp seals, which migrated
toward Europe in response to food shortages
due to overfishing around Greenland in the
late 1980s (24 ). Serological studies have
shown also that morbilliviruses like DMV
and PMV are ubiquitous among cetaceans
and are probably transmitted periodically be-
tween species (25). A recent survey conduct-
ed among terrestrial and aquatic carnivores of
Alaska showed that both CDV and PDV are
endemic in these populations (26 ). Recently,
DMV- and PMV-like viruses were found in
the highly endangered Mediterranean monk
seals, which had died either during a mass
mortality off the coast of Mauritania or as
individually dispersed animals found in
Greek waters (27 ) (Fig. 2). In addition, influ-
enza viruses that had spilled over from aquat-
ic or migratory avian reservoirs have caused

Table 1. Mass mortalities (.10% mortality within populations, where enumerated) among natural populations of selected marine species. Environmental
correlates: T, temperature; ND, no data; sal, salinity; turb, turbidity; hur, hurricane.

Start
date

Host species Outbreak location Pathogen identity
Estimated
mortality

(%)

Environmental
correlates

Ref.

1938 Sponges North Caribbean Fungus? 70–95 ND 86
1931 Zostrea (seagrasses) North America, Europe Slime mold Extensive High T 87
1946 Crassostrea (oyster) Gulf Coast, U.S.A. Perkinsus marinus Extensive High T, sal 88
1954 Clupea (herring) Gulf St. Lawrence Ichthyophonus hoferi 50 ND 89
1955 Lobodon (seal) Antarctica Virus Extensive ND 90
1974 Ostrea (flat oyster) Northwestern Spain Marteilia refringens Extensive ND 19
1975 Heliaster (starfish) Western U.S.A. ? ,100 High T 91
1980 Strongylocentrotus (urchin) Northwestern Atlantic Amoeba? .50 ND 92
1980 Ostrea (oyster) Netherlands Bonamia ostreae Extensive ND 93
1981 Acropora (coral) Caribbeanwide Bacteria? .100 ND 8
1982 Gorgonia (coral) Central America ? Extensive High T 29
1982–6 Haliotis (abalone) Australia Perkinsus sp. Extensive High T 94
1983 Corals Caribbeanwide Microbial consortium Seasonal 95
1983 Patinopecten (scallop) Western Canada Perkinsus qugwadi Extensive ND 96
1983 Diadema (urchin) Caribbeanwide Bacteria? .95 High T 6
1985 Haliotis (abalone) Northeastern Pacific ? .95 High T 97
1986–90 Ruditapes (clam) Portugal Perkinsus atlanticus Extensive ND 98
1987 Thalassia (seagrass) Florida, U.S.A. Slime mold ,95 High T, sal 9
1988 Argopecten (scallop) North Caribbean Protozoan Extensive ND 99
1988 Phoca (seals) Northwestern Europe Virus ;70 Pollution 22
1988 Phocoena (porpoise) Northeastern Ireland Virus ? Pollution 100
1989 Argopecten (scallop) Eastern Canada Perkinsus sp.? Extensive ND 101
1989 Phoca (seals) Lake Baikal Virus .10 ND 102
1990 Stenella (dolphin) Western Mediterranean Virus .20 Pollution 103
1991 Clupea (herring) Western Sweden Ichthyophonus hoferi .10 Low T 104
1992 Ecklonia (kelp) Northeastern New Zealand ? 40–100 High turb 105
1993 Coralline algae South Pacific Bacteria? Extensive ND 106
1995 Strongylocentrotus (urchin) Norway Nematode? ;90 ND 107
1995 Gorgonia (corals) Caribbeanwide Fungus Extensive ND 108
1995 Dichocoenia and others (coral) Florida, U.S.A. Bacteria ,38 Seasonal 109
1996 Diploria and others (coral) Puerto Rico Bacteria Extensive Seasonal, hur 110
1997 Porolithon (algae) Samoa Fungus Extensive ND 111
1997 Sardinops (pilchard) Southern Australia Virus? Extensive ND 112
1997 Monachus (seal) West Africa Virus/toxin .75 ND 16
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mortality among seals and whales (28). An
unusual case of a host shift in a marine inver-
tebrate is the aspergillosis of Caribbean sea fan
corals (29). The pathogen, identified as As-
pergillus sydowii (30), is typically a soil-borne
fungus that is known to cause opportunistic
infections of terrestrial species (31). In sea fans
(Gorgonia spp.), monitoring studies show that
the fungus can rapidly erode the coral (Fig. 3)
and, in some cases, cause death. Its emergence
as a marine pathogen suggests the ineffective-
ness of the land-sea boundary as a barrier to
disease transmission.

Conditions Favoring Disease
Outbreaks
A disease outbreak is favored by changing
environmental conditions that either increase
prevalence and virulence of existing disease
or facilitate new disease (32). Two condi-
tions—climate variability and human activi-
ty—appear to have played roles in epidemics
by undermining host resistance and facilitat-
ing pathogen transmission.

Role of climate variability. Climate-in-
duced changes in the environment affect
health and productivity of marine ecosystems
over extended spatial and temporal scales.
The current trend toward a warming climate
could result in modifications to the basic
biological properties of many marine popula-

tions, thereby making them more susceptible
to disease. For example, a mid-1980s epi-
demic among northern European harbor seals
was preceded by increased temperatures,
which promoted higher than normal densities
of these seals on land and thus provided an
ideal setting for transmission of disease (33).
The El Niño Southern Oscillation (ENSO) is
one of the more visible climate variations that
has had large-scale effects on marine ecosys-
tems. During the past 5000 years, ENSO
events have typically occurred at a frequency
of one to two per decade (34 ) but, since the
mid-1970s, have occurred more often and
persisted longer (35). The impact of these
climatological events on marine species is
clearly evident among corals, which are
known to bleach (expulsion of the symbiotic
algae) in response to a range of environmen-
tal stresses (36 ). The coral bleaching of 1998
was the most geographically extensive and
severe in recorded history (37 ), causing sig-
nificant mortality worldwide (38). The stress
for many of these coral reef systems seems to
be the result of long-term exposure to unusu-
ally high water temperatures resulting from a
prolonged ENSO event (39). Although re-
ported only as bleaching-related mortality,
demise of some corals is likely to have been
accelerated by opportunistic infections (40).
Given that a bacterium may be contributing
to bleaching in at least one coral pathosystem
(41), additional research is needed to fully
evaluate the interaction between bleaching
and disease.

In addition, ENSO events have been impli-
cated in interannual variation in Dermo, a dis-
ease of the Eastern oyster (Crassostrea vir-
ginica), caused by the protozoan parasite Per-

kinsus marinus (42). Throughout the Gulf of
Mexico, where Dermo is endemic, P. marinus
infection intensity closely follows the ENSO
cycle. Gulfwide P. marinus infection intensity
and prevalence drop during El Niño events and
rise during La Niña events. La Niña events tend
to produce warm, dry conditions in the Gulf of
Mexico, which can trigger P. marinus out-
breaks; El Niño events produce cold wet con-
ditions, which reduce prevalence and intensity.
The apparent relation between P. marinus in-
fection in Gulf of Mexico oyster populations
and ENSO suggests that epidemics may be
predictable from climate models. Because P.
marinus controls oyster populations in the Gulf,
the status of ENSO events needs to be consid-
ered when setting management strategies for
oyster populations.

Recent ENSOs also affected species rang-
es and composition of marine communities
(43), which in turn, produced cascading
changes through all trophic levels over large
spatial scales (44 ). In particular, warming
oceans have had a number of consequences
for disease dynamics. The almost 25-year
trend of warming winter temperatures (45) on
the east coast of the United States may have
facilitated the spread of both Dermo (Fig. 4)
and MSX (multinucleated spore unknown),
an oyster disease caused by Haplosporidium
nelsoni (46, 47 ). Throughout the 1980s, dis-
eases spread and intensified in oyster popu-
lations throughout Chesapeake Bay. In the
early 1990s, Dermo became epidemic in Del-
aware Bay and by 1995 occurred in Maine. In
the summer of 1998, MSX was epidemic in
oyster populations of Long Island, New
York, resulting in extensive mortality. The
northward expansion of these shellfish dis-
eases has been attributed to environmental
changes that favor the parasites (44, 45 ). For
MSX, warmer winters decreased parasite
mortality, resulting in oysters retaining heavy
infections. A warming trend produces an en-
vironment that is likely to favor northward
range expansion of P. marinus into new,
susceptible host populations (46 ).

Direct role of human activity. Human ac-
tivity has greatly enhanced global transport of
marine species (48) including pathogens. Hu-
man-facilitated epidemics are most common
in aquaculture (49, 50) and, in fact, it has
been suggested (49) that most mass mortali-
ties of bivalve mollusks have resulted from
transfer of infectious stocks. Because of ob-
vious economic concerns, spread of shrimp
viral diseases has been generally well docu-
mented. The infectious hypodermal and he-
matopoietic necrosis virus, which appears to
have its origins in the Indo-Pacific, now oc-
curs throughout the world causing catastroph-
ic epidemics in aquaculture facilities. More-
over, its host range appears to include a wild
species of shrimp and its spread was partially
responsible for halting Mexican commercial

Fig. 1. The proportion of reef stations in the
Florida Keys National Marine Sanctuary with
coral disease (85). Disease became significantly
more widespread (F 5 Wald’s chi-square divid-
ed by degrees of freedom for year effects) for
black band (BB, open circles; F 5 9.28, P ,
0.0002), white diseases (WH, open diamonds;
F 5 33.48, P , 0.0001), other diseases (OD,
open triangles; F 5 21.10, P , 0.0001), and
total diseases (TD, closed squares; F 5 42.33,
P , 0.0001; df 5 2,78) from 1996 to 1998.
Whereas only 26 of 160 stations (16%) were
diseased in 1996, 131 (82%) were in 1998.
Further, there has also been an increase in the
number of species affected. Whereas only 11
species exhibited signs of disease in 1996 (27%
of all species in the survey), by 1998, this
number had risen to 35 species (85% of all
species). Over the same period, living coral
cover on the deep fore-reef (17 to 18 m depth)
of Carysfort Reef has declined from 13.3% to
5.3% (a 60% reduction of living coral cover on
this reef during the survey).

Fig. 2. Mass mortality of monk seals due to
morbillivirus or algal toxin in Mauritania, 1997
(Photo by K. van der Meulen, Seal Rehabili-
tation and Research Center, Pieterburen,
Netherlands).
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fishery for a few years (51). A large-scale
epidemic of herpesvirus-infected Austral-
asian pilchard (Sardinops sagax) spread at
about 30 km/day from Anxious Bay, South
Australia, to cover a total of about 5000 km
of Australian coastline from March to Sep-
tember 1995. Evidence suggests that the virus
may have been introduced with frozen pil-
chards imported to feed sea-caged southern
bluefin tuna in South Australia (52). A sec-
ond large-scale epidemic started in October
1998 in Spenser Gulf, Australia, where fro-
zen imported pilchard feed also has been used
(53).

Habitat degradation and pollutant inputs,
often brought about by human activity, can
facilitate disease outbreaks (54 ). Work on
aquatic mammals indicates that pollutants,
for example, organochlorides, have immuno-
toxic properties, impairing natural killer cell
activity, as well as a series of mitogen- and
antigen-induced T cell responses (55). Be-
cause most coastal waters are typically affect-
ed by suites of anthropogenic pollutants and
inputs, it often is difficult to identify any one
specific cause of deteriorating health or dis-
ease outbreak. Recent mass mortality off the
coast of Mauritania among Mediterranean
monk seals, thought to have resulted from the
transmission of DMV from dolphins that had
died in the same area (56 ), may have been
facilitated or caused by a toxic algal bloom
(15, 57 ). In addition to directly affecting
marine hosts, some infections can compro-
mise the host immune system, which is then
capable of serving as a reservoir for other
infectious agents (58) including many “new”
viruses, some of which are pathogenic to
humans and domestic animals (28, 59). In
contrast, we know little about how habitat
degradation facilitates disease emergence,
particularly among invertebrates. To date,
much of what is known comes from a limited
number of correlative studies that show in-
creased prevalence of coral diseases (60) and
increased parasite burden in oysters (61) in
more degraded sites. Silt in run-off has been
a leading cause of coral mortality worldwide.
In one case, the emergence of a new disease,

aspergillosis of sea fan corals, has been asso-
ciated with transmission of disease in terres-
trial run-off (29, 30). A better understanding
of the origins of emergent disease and inver-
tebrate immunity (62) is needed before we
can evaluate the role of changing environ-
ments in host-pathogen interactions. Studies
of invertebrate resistance to disease will not
only provide important insights for manage-
ment of commercial and natural populations,
but also will yield molecules and compounds
with biomedical applications (63) (Fig. 4).

Oceans as Incubators and Conveyors
of Human Diseases
Many potentially pathogenic organisms, in-
cluding Aeromonas, Clostridium, Klebsiella,
Legionella, Listeria, Pseudomonas, and
Vibrio, are naturally active in estuaries and
oceans (64 ); some can persist in dormant,
unculturable, but viable states (65). Human
activity has also added to the pathogen load
in the oceans, primarily through sewage dis-
charges, although storm waters also carry
human and animal wastes (66 ). Other non-
point sources of pollution are important. For
example, recent studies showed that materials
in septic tanks and injection wells moved
rapidly seaward (67 ) and into offshore ma-
rine waters within a day (68). Once in coastal
waters, pathogens can persist (64, 69) and
infect humans through recreational exposure
or consumption of contaminated fish or shell-
fish (70). In urban centers where rapid growth
continues, these problems are expected to
increase (71), and the added burden on waste-
water treatment systems is likely to increase
the probability of serious human fecal con-
tamination of drinking water by a variety of
pathogens including hepatitis A, Coxsackie,
and Norwalk-like viruses (72). Cholera pro-
vides a good example of how human health
threats from the ocean are affected by climate
(73). The causative agent of cholera (Vibrio
cholerae) is associated with marine plankton.
Annual epidemics that occur in Bangladesh
have been correlated with sea surface temper-
ature and sea surface height. Clinical data
underlying incidence and severity of epidem-

ics have been linked to water temperature, tur-
bidity, and plankton blooms, notably zooplank-
ton. By remote sensing, monitoring of sea sur-
face temperature, turbidity, chlorophyll, and sea
surface height, it has been possible to determine
which environmental parameters strongly cor-
relate with epidemics. Because nutrients enter
riverine and coastal systems during heavy rain-
fall, often triggering plankton blooms, ENSO-
related events also play a role in cholera out-
breaks (74). ENSO-related increases in rainfall
are likely also to intensify microbial and toxic
contaminant inputs from terrestrial sources (75)
and to promote the emergence of novel infec-
tions among marine species and humans (76).

New Tools in the Study of
Marine Diseases
Fundamental to the understanding of infectious
disease is the identification, isolation, and char-
acterization of the causative agent, enabling
development of specific diagnostic methods for
epidemiological surveys and host resistance.
Identification of marine pathogens has been
problematic because of ineffective culturing
techniques. Recent advances in molecular biol-
ogy provide approaches in the identification of
species, strains, and life-cycle stages of micro-
bial pathogens (77). Species-specific DNA
probes from ribosomal sequences provide ac-
curate and rapid diagnostic tools for the evalu-
ation of environmental samples. When used in
combination with the polymerase chain reac-
tion (PCR), these probes allow detection and
identification of an increasing number of etio-
logical agents. Selecting the NTS region be-
tween the 5S and SSU ribosomal RNA genes as
the target nucleotide sequence, a semiquantita-
tive PCR-based assay was developed for the
diagnosis of P. marinus in oyster tissues (78,
79). PCR-based assays are more specific than
most current methodologies, and can be de-
signed to be strain-specific, species-specific, or

Fig. 3. Time series of damage caused by Aspergillus sydowii on a monitored sea fan: (A) 16 June
1996, (B) 8 August 1996, (C) 10 November 1997 (113) (Photos by Craig Quirolo, Reef Relief ).

Fig. 4. Phagocytosis of Perkinsus marinus by
eastern oyster (Crassostrea virginica) hemo-
cytes ( J. D. Gauthier and G. R. Vasta). Perkinsus
marinus is one of few marine protistan patho-
gens in clonal culture.
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genus-specific (68, 77). The recent application
of “real-time” PCR to field diagnostics of mi-
crobial pathogens reveals the potential of this
approach for the rapid and reliable diagnosis of
diseases in the marine environment (80).

A critical need in the study of marine
diseases is epidemiologically structured his-
torical records and more quantitative analyses
of marine epidemics. Epidemiological studies
of marine disease have lagged far behind
work in terrestrial communities, where anal-
yses have revealed links between host immu-
nity, modes of transmission, and disease vir-
ulence (32, 81). Epidemiological studies of
marine organisms have been limited to a few
selected host species (33, 46, 82) and al-
though these studies illustrate the utility of
modeling approaches, broader usage has been
impeded by limited data sets for most natural
populations, and complexities of strong envi-
ronmental signals operating in open marine
ecosystems. For some taxa, like corals (83),
monitoring data are currently being compiled
to elucidate disease processes; however,
greater effort is needed if we are to gain a
broader understanding of disease dynamics in
the ocean. For instance, corals seem already
to be acting as indicator species of a height-
ened disease load and are tractable for exam-
ining the frequencies of temperature stress
and disease emergence in tropical oceans be-
cause they are sessile (which allows us to
pinpoint impacted locations), secrete large
and permanent skeletons (which can record
the passage of disease, even after the coral is
dead), and they are modular (which allows
signs of chronic infections to endure without
killing the whole colony, unlike small unitary
species).

Conclusion
By the measures cited, it can be concluded
that reports of diseases in the ocean are on the
rise. We have illustrated this point using spe-
cies that are important economically and eco-
logically like shellfish, corals, and marine
mammals. Epidemics must also be affecting
less apparent species, many of which may be
disappearing without notice (84 ). Most new
diseases occur by host shifts and not by the
emergence of new microorganisms. Contrib-
uting to the emergence of new diseases would
be a long-term warming trend, coupled with
extreme ENSO events and human activities
that have modified marine communities. The
inability even to identify most causative
agents and the lack of standard epidemiolog-
ical data for diseased populations limit our
ability to examine host-pathogen interactions,
to analyze changes in disease dynamics, and
to assess the impact of diseases on host pop-
ulations and associated communities in the
world oceans. Given this prospect, there is an
urgent need for interdisciplinary studies of
marine diseases, focusing on the develop-

ment of better molecular and computational
tools and on understanding mechanisms of
disease resistance in marine organisms.
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