432 research outputs found
Test-particle acceleration in a hierarchical three-dimensional turbulence model
The acceleration of charged particles is relevant to the solar corona over a
broad range of scales and energies. High-energy particles are usually detected
in concomitance with large energy release events like solar eruptions and
flares, nevertheless acceleration can occur at smaller scales, characterized by
dynamical activity near current sheets. To gain insight into the complex
scenario of coronal charged particle acceleration, we investigate the
properties of acceleration with a test-particle approach using
three-dimensional magnetohydrodynamic (MHD) models. These are obtained from
direct solutions of the reduced MHD equations, well suited for a plasma
embedded in a strong axial magnetic field, relevant to the inner heliosphere. A
multi-box, multi-scale technique is used to solve the equations of motion for
protons. This method allows us to resolve an extended range of scales present
in the system, namely from the ion inertial scale of the order of a meter up to
macroscopic scales of the order of km (th of the outer scale of
the system). This new technique is useful to identify the mechanisms that,
acting at different scales, are responsible for acceleration to high energies
of a small fraction of the particles in the coronal plasma. We report results
that describe acceleration at different stages over a broad range of time,
length and energy scales.Comment: 12 pages, 8 figures, ApJ (in press
Hall-MHD small-scale dynamos
Much of the progress in our understanding of dynamo mechanisms has been made
within the theoretical framework of magnetohydrodynamics (MHD). However, for
sufficiently diffuse media, the Hall effect eventually becomes non-negligible.
We present results from three dimensional simulations of the Hall-MHD equations
subjected to random non-helical forcing. We study the role of the Hall effect
in the dynamo efficiency for different values of the Hall parameter, using a
pseudospectral code to achieve exponentially fast convergence. We also study
energy transfer rates among spatial scales to determine the relative importance
of the various nonlinear effects in the dynamo process and in the energy
cascade. The Hall effect produces a reduction of the direct energy cascade at
scales larger than the Hall scale, and therefore leads to smaller energy
dissipation rates. Finally, we present results stemming from simulations at
large magnetic Prandtl numbers, which is the relevant regime in hot and diffuse
media such a the interstellar medium.Comment: 11 pages and 11 figure
Scaling law for the heating of solar coronal loops
We report preliminary results from a series of numerical simulations of the
reduced magnetohydrodynamic equations, used to describe the dynamics of
magnetic loops in active regions of the solar corona. A stationary velocity
field is applied at the photospheric boundaries to imitate the driving action
of granule motions.
A turbulent stationary regime is reached, characterized by a broadband power
spectrum and heating rate levels compatible with the
heating requirements of active region loops. A dimensional analysis of the
equations indicates that their solutions are determined by two dimensionless
parameters: the Reynolds number and the ratio between the Alfven time and the
photospheric turnover time. From a series of simulations for different values
of this ratio, we determine how the heating rate scales with the physical
parameters of the problem, which might be useful for an observational test of
this model.Comment: 12 pages, 4 figures. Astrophysical Journal Letters (in press
Magnetic field reversals and long-time memory in conducting flows
Employing a simple ideal magnetohydrodynamic model in spherical geometry,we
show that the presence of either rotation or finite magnetic helicity is
sufficient to induce dynamical reversals of the magnetic dipole moment. The
statistical character of the model is similar to that of terrestrial magnetic
field reversals, with the similarity being stronger when rotation is
present.The connection between long time correlations, noise, and
statistics of reversals is supported, consistent with earlier suggestions.Comment: accepted in Physical Review
Efficient spin control in high-quality-factor planar micro-cavities
A semiconductor microcavity embedding donor impurities and excited by a laser
field is modelled. By including general decay and dephasing processes, and in
particular cavity photon leakage, detailed simulations show that control over
the spin dynamics is significally enhanced in high-quality-factor cavities, in
which case picosecond laser pulses may produce spin-flip with high-fidelity
final states.Comment: 6 pages, 4 figure
Coronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage
Coronal loops act as resonant cavities for low frequency fluctuations that
are transmitted from the deeper layers of the solar atmosphere and are
amplified in the corona, triggering nonlinear interactions. However trapping is
not perfect, some energy leaks down to the chromosphere, thus limiting the
turbulence development and the associated heating. We consider the combined
effects of turbulence and leakage in determining the energy level and
associated heating rate in models of coronal loops which include the
chromosphere and transition region. We use a piece-wise constant model for the
Alfven speed and a Reduced MHD - Shell model to describe the interplay between
turbulent dynamics in the direction perpendicular to the mean field and
propagation along the field. Turbulence is sustained by incoming fluctuations
which are equivalent, in the line-tied case, to forcing by the photospheric
shear flows. While varying the turbulence strength, we compare systematically
the average coronal energy level (E) and dissipation rate (D) in three models
with increasing complexity: the classical closed model, the semi-open corona
model, and the corona-chromosphere (or 3-layer) model, the latter two models
allowing energy leakage. We find that:
(i) Leakage always plays a role (even for strong turbulence), E and D are
systematically lower than in the line-tied model. (ii) E is close to the
resonant prediction, i.e., assuming effective turbulent correlation time longer
than the Alfven coronal crossing time (Ta). (iii) D is close to the value given
by the ratio of photospheric energy divided by Ta (iv) The coronal spectra
exibits an inertial range with 5/3 spectral slope, and a large scale peak of
trapped resonant modes that inhibit nonlinear couplings. (v) In the realistic
3-layer model, the two-component spectrum leads to a damping time equal to the
Kolmogorov time reduced by a factor u_rms/Va_coronaComment: 15 pages, 15 figures, Accepted for publication in A&
Statistical properties of solar wind discontinuities, intermittent turbulence, and rapid emergence of non-Gaussian distributions
Recent studies have compared properties of the magnetic field in simulations of Hall MHD turbulence with spacecraft data, focusing on methods used to identify classical discontinuities and intermittency statistics. Comparison of ACE solar wind data and simulations of 2D and 3D turbulence shows good agreement in waitingâtime analysis of magnetic discontinuities, and in the related distribution of magnetic field increments. This supports the idea that the magnetic structures in the solar wind may emerge fast and locally from nonlinear dynamics that can be understood in the framework of nonlinear MHD theory. The analysis suggests that small scale current sheets form spontaneously and rapidly enough that some of the observed solar wind discontinuities may be locally generated, representing boundaries between interacting flux tubes
- âŠ