304 research outputs found

    Risk of Second Malignant Neoplasms Following Proton Arc Therapy and Volumetric Modulated Arc Therapy for Prostate Cancer

    Get PDF
    The risk of second malignant neoplasms (SMNs) following prostate radiotherapy is a concern due to the large population of survivors and decreasing age at diagnosis. It is known that parallel-opposed beam proton therapy carries a lower risk than photon IMRT. However, a comparison of SMN risk following proton and photon arc therapies has not previously been reported. The purpose of this study was to predict the ratio of excess relative risk (RRR) of SMN incidence following proton arc therapy to that after volumetric modulated arc therapy (VMAT). Additionally, we investigated the impact of margin size and the effect of risk-minimized proton beam weighting on predicted RRR. Physician-approved treatment plans were created for both modalities for three patients. Therapeutic dose was obtained with differential dose-volume histograms from the treatment planning system, and stray dose was estimated from the literature or calculated with Monte Carlo simulations. Then, various risk models were applied to the total dose. Additional treatment plans were also investigated with varying margin size and risk-minimized proton beam weighting. The mean RRR ranged from 0.74 to 0.99, depending on risk model. The additional treatment plans revealed that the RRR remained approximately constant with varying margin size, and that the predicted RRR was reduced by 12% using a risk-minimized proton arc therapy planning technique. In conclusion, proton arc therapy was found to provide an advantage over VMAT in regard to predicted risk of SMN following prostate radiotherapy. This advantage was independent of margin size and was amplified with risk-optimized proton beam weighting

    Impact of margin size on the predicted risk of radiogenic second cancers following proton arc therapy and volumetric modulated arc therapy for prostate cancer

    Get PDF
    We previously determined that the predicted risk of radiogenic second cancer in the bladder and rectum after proton arc therapy (PAT) was less than or equal to that after volumetric modulated arc therapy (VMAT) with photons, but we did not consider the impact of margin size on that risk. The current study was thus conducted to evaluate margin size\u27s effect on the predicted risks of second cancer for the two modalities and the relative risk between them. Seven treatment plans with margins ranging from 0 mm in all directions to 6 mm posteriorly and 8 mm in all other directions were considered for both modalities. We performed risk analyses using three risk models with varying amounts of cell sterilization and calculated ratios of risk for the corresponding PAT and VMAT plans. We found that the change in risk with margin size depended on the risk model but that the relative risk remained nearly constant with margin size, regardless of the amount of cell sterilization modeled. We conclude that while margin size influences the predicted risk of a second cancer for a given modality, it appears to affect both modalities in roughly equal proportions so that the relative risk between PAT and VMAT is approximately equivalent. © 2012 Institute of Physics and Engineering in Medicine

    Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer

    Get PDF
    Prostate cancer patients who undergo radiotherapy are at an increased risk to develop a radiogenic second cancer. Proton therapy has been shown to reduce the predicted risk of second cancer when compared to intensity modulated radiotherapy. However, it is unknown if this is also true for the rotational therapies proton arc therapy and volumetric modulated arc therapy (VMAT). The objective of this study was to compare the predicted risk of cancer following proton arc therapy and VMAT for prostate cancer. Proton arc therapy and VMAT plans were created for three patients. Various risk models were combined with the dosimetric data (therapeutic and stray dose) to predict the excess relative risk (ERR) of cancer in the bladder and rectum. Ratios of ERR values (RRR) from proton arc therapy and VMAT were calculated. RRR values ranged from 0.74 to 0.99, and all RRR values were shown to be statistically less than 1, except for the value calculated with the linear-non-threshold risk model. We conclude that the predicted risk of cancer in the bladder or rectum following proton arc therapy for prostate cancer is either less than or approximately equal to the risk following VMAT, depending on which risk model is applied. © 2012 Institute of Physics and Engineering in Medicine

    Risk-optimized proton therapy to minimize radiogenic second cancers

    Get PDF
    Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimizes the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment planning utilized a combination of a commercial treatment planning system and an in-house risk-optimization algorithm. When normal-tissue dose constraints were incorporated in treatment planning, the risk model that incorporated the effects of fractionation, initiation, inactivation, repopulation and promotion selected a combination of anterior and lateral beams, which lowered the relative risk by 21% for the bladder and 30% for the rectum compared to the lateral-opposed beam arrangement. Other results were found for other risk models

    Prevalence of extraintestinal manifestations in paediatric patients with Inflammatory Bowel Disease : results from the Swiss IBD Cohort Study

    Get PDF
    Background: There is a paucity of data from large cohort studies on the prevalence and type of extraintestinal manifestations in pediatric patients with Crohn's disease (CD) and ulcerative colitis (UC). We aimed to assess the prevalence and type of EIM in pediatric patients with inflammatory bowel disease (IBD). Methods: Data from patients enrolled in the Pediatric Swiss IBD Cohort Study (P-SIBDCS) were analyzed. Since 2008 the P-SIBDCS collects data on patients aged 2-17 from hospitals and private practices across Switzerland. Results of continuous data are reported as median and interquartile range

    Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG

    Get PDF
    Background: This randomized phase III trial was designed to demonstrate the superiority of autologous peptide-loaded dendritic cell (DC) vaccination over standard dacarbazine (DTIC) chemotherapy in stage IV melanoma patients. Patients and methods: DTIC 850 mg/m2 intravenously was applied in 4-week intervals. DC vaccines loaded with MHC class I and II-restricted peptides were applied subcutaneously at 2-week intervals for the first five vaccinations and every 4 weeks thereafter. The primary study end point was objective response (OR); secondary end points were toxicity, overall (OS) and progression-free survival (PFS). Results: At the time of the first interim analysis 55 patients had been enrolled into the DTIC and 53 into the DC-arm (ITT). OR was low (DTIC: 5.5%, DC: 3.8%), but not significantly different in the two arms. The Data Safety & Monitoring Board recommended closure of the study. Unscheduled subset analyses revealed that patients with normal serum LDH and/or stage M1a/b survived longer in both arms than those with elevated serum LDH and/or stage M1c. Only in the DC-arm did those patients with (i) an initial unimpaired general health status (Karnofsky = 100) or (ii) an HLA-A2+/HLA-B44− haplotype survive significantly longer than patients with a Karnofsky index <100 (P = 0.007 versus P = 0.057 in the DTIC-arm) or other HLA haplotypes (P = 0.04 versus P = 0.57 in DTIC-treated patients). Conclusions: DC vaccination could not be demonstrated to be more effective than DTIC chemotherapy in stage IV melanoma patients. The observed association of overall performance status and HLA haplotype with overall survival for patients treated by DC vaccination should be tested in future trials employing DC vaccine

    The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture

    Get PDF
    Laser welding of aluminium alloys typically results in porosity in the fusion zones, leading to poor mechanical and corrosion performances. Mechanical and chemical cleaning of surfaces has been used previously to remove contaminants for weld joint preparations. However, these methods are slow, ineffective (e.g. due to hydrogen trapping) or lead to environmental hazards. This paper reports the effects of short pulsed laser surface cleaning on porosity formation and reduction in laser welding of AC-170PX (AA6014) aluminium sheets (coated with Ti/Zr and lubricated using a dry lubricant AlO70) with two types of joints: fillet edge and flange couch, using an AA4043 filler wire for automotive component assembly. The effect of laser cleaning on porosity reduction during laser welding using a filler wire has not been reported before. In this work, porosity and weld fusion zone geometry were examined prior to and after laser cleaning. The nanosecond pulsed Nd:YAG laser cleaning was found to reduce porosity significantly in the weld fusion zones. For the fillet edge welds, porosity was reduced to less than 0.5% compared with 10–80% without laser cleaning. For flange couch welds, porosity was reduced to 0.23–0.8% with laser cleaning from 0.7% to 4.3% without laser cleaning. This has been found to be due to the elimination of contaminations and oxide layers that contribute to the porosity formation. The laser cleaning is based on thermal ablation
    corecore