290 research outputs found

    The Intracellular Localization of ID2 Expression Has a Predictive Value in Non Small Cell Lung Cancer

    Get PDF
    ID2 is a member of a subclass of transcription regulators belonging to the general bHLH (basic-helix-loophelix) family of transcription factors. In normal cells, ID2 is responsible for regulating the balance between proliferation and differentiation. More recent studies have demonstrated that ID2 is involved in tumor progression in several cancer types such as prostate or breast

    RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes

    Get PDF
    We propose a generic framework for gene regulatory network (GRN) inference approached as a feature selection problem. GRNs obtained using Machine Learning techniques are often dense, whereas real GRNs are rather sparse. We use a Tikonov regularization inspired optimal L-curve criterion that utilizes the edge weight distribution for a given target gene to determine the optimal set of TFs associated with it. Our proposed framework allows to incorporate a mechanistic active biding network based on cis-regulatory motif analysis. We evaluate our regularization framework in conjunction with two non-linear ML techniques, namely gradient boosting machines (GBM) and random-forests (GENIE), resulting in a regularized feature selection based method specifically called RGBM and RGENIE respectively. RGBM has been used to identify the main transcription factors that are causally involved as master regulators of the gene expression signature activated in the FGFR3-TACC3-positive glioblastoma. Here, we illustrate that RGBM identifies the main regulators of the molecular subtypes of brain tumors. Our analysis reveals the identity and corresponding biological activities of the master regulators characterizing the difference between G-CIMP-high and G-CIMP-low subtypes and between PA-like and LGm6-GBM, thus providing a clue to the yet undetermined nature of the transcriptional events among these subtypes

    The Genetic Germline Background of Single and Multiple Primary Melanomas

    Get PDF
    Background: Melanoma has a complex molecular background and multiple genes are involved in its development and progression. The advent of next generation sequencing platforms has enabled the evaluation of multiple genes at a time, thus unraveling new insights into the genetics of melanoma. We investigated a set of germline mutations able to discriminate the development of multiple primary melanomas (MPM) vs. single site primary melanomas (SPM) using a targeted next generation sequencing panel. Materials and Methods: A total of 39 patients, 20 with SPM and 19 with MPM, were enrolled in our study. Next generation analysis was carried out using a custom targeted sequencing panel that included 32 genes known to have a role in several carcinogenic pathways, such as those involved in DNA repair, pigmentation, regulation of kinases, cell cycle control and senescence. Results: We found a significant correlation between PIK3CA:p.I391M and MPMs, compared to SPMs, p = 0.031 and a trend for the association between CYP1B1: p.N453S and SPMs, compared to MPMs (p = 0.096). We also found that both subgroups shared a spectrum of 9 alterations in 8 genes (CYP1B1: p.N453S, BAP1: p.C39fs, PIK3CA: p.I391M, CDKAL1: c.1226_1227TG, POLE: p.V1161fs, OCA2: p.R419Q, OCA2: p.R305W, MC1R: p.V60L, MGMT: p.L115F), which suggested that these genes may play a role in melanoma development. Conclusions: In conclusion, despite the small cohort of patients, we found that germline mutations, such as those of PIK3CAand CYP1B1, might contribute to the differential development of SPM and MPM

    The Genetic Germline Background of Single and Multiple Primary Melanomas

    Get PDF
    Background: Melanoma has a complex molecular background and multiple genes are involved in its development and progression. The advent of next generation sequencing platforms has enabled the evaluation of multiple genes at a time, thus unraveling new insights into the genetics of melanoma. We investigated a set of germline mutations able to discriminate the development of multiple primary melanomas (MPM) vs. single site primary melanomas (SPM) using a targeted next generation sequencing panel. Materials and Methods: A total of 39 patients, 20 with SPM and 19 with MPM, were enrolled in our study. Next generation analysis was carried out using a custom targeted sequencing panel that included 32 genes known to have a role in several carcinogenic pathways, such as those involved in DNA repair, pigmentation, regulation of kinases, cell cycle control and senescence. Results: We found a significant correlation between PIK3CA:p.I391M and MPMs, compared to SPMs, p = 0.031 and a trend for the association between CYP1B1: p.N453S and SPMs, compared to MPMs (p = 0.096). We also found that both subgroups shared a spectrum of 9 alterations in 8 genes (CYP1B1: p.N453S, BAP1: p.C39fs, PIK3CA: p.I391M, CDKAL1: c.1226_1227TG, POLE: p.V1161fs, OCA2: p.R419Q, OCA2: p.R305W, MC1R: p.V60L, MGMT: p.L115F), which suggested that these genes may play a role in melanoma development. Conclusions: In conclusion, despite the small cohort of patients, we found that germline mutations, such as those of PIK3CAand CYP1B1, might contribute to the differential development of SPM and MPM

    Soil Management Systems: Effects on Soil Properties and Weed Flora

    Get PDF
    A three-year experiment was conducted in order to evaluate the effects of three different soil management systems in a vineyard (organic mulch with exhausted olive pomace at 6 cm thick, weed mowing and herbicide application) on soil physicochemical characteristics and weed flora. A variety of data was collected throughout the trial, such as soil analyses, weed surveys and phytotoxicity tests. The results show that the exhausted olive pomace was able to increase the K and Mg content and exerted good control over weeds, and also had an effect on the weed flora composition. Although further research is needed, it is possible to conclude that the mode of action of the exhausted olive pomace was both mechanical (thickness of the layer) and phytochemical for the release of phytotoxic compounds (allelochemicals)

    Aberrant Expression of ID2 protein and its correlation with EBV-LMP1 and P16(INK4A) in Classical Hodgkin Lymphoma in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationships between the expression of ID2, EBV-LMP1 and P16(INK4A) in Chinese classical Hodgkin lymphoma are unknown and need exploring.</p> <p>Methods</p> <p>Samples of classical Hodgkin lymphoma from 60 Chinese patients were analyzed for the expression of ID2, EBV-LMP1 and p16(INK4A) proteins by immunohistochemistry.</p> <p>Results</p> <p>ID2 protein was expressed in 83.3% of this group of classical Hodgkin lymphoma, staining strongly in both cytoplasm and nucleus of the Hodgkin and Reed-Sternberg (HRS) cells. EBV-LMP1 and P16(INK4A) were overexpressed in 85.0% and 71.7% of Hodgkin lymphoma, respectively. EBV-LMP1 was noted in the cytoplasm, membrane and nucleus of HRS cells; P16(INK4A) was in the nucleus and cytoplasm. Microscopically, ID2, EBV-LMP1 and P16(INK4A) staining distinguished the HRS cells from the complex background of lymphocytes. ID2 was positively correlated with EBV-LMP1(<it>P </it>< 0.01), but P16(INK4A) was inversely related to EBV-LMP1 (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>It is suggested that ID2, EBV-LMP1 and P16(INK4A) could play an important role in the evolution of classical Hodgkin lymphoma, and be considered as potential adjunct markers to identify HRS cells in diagnosis.</p

    Mab21l2 Is Essential for Embryonic Heart and Liver Development

    Get PDF
    During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which α4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation
    • …
    corecore