386 research outputs found
Height Fluctuations and Intermittency of Films by Atomic Force Microscopy
The spatial scaling law and intermittency of the surface roughness
by atomic force microscopy has been investigated. The intermittency of the
height fluctuations has been checked by two different methods, first, by
measuring scaling exponent of q-th moment of height-difference fluctuations
i.e. and the second, by defining generating
function and generalized multi-fractal dimension . These methods
predict that there is no intermittency in the height fluctuations. The observed
roughness and dynamical exponents can be explained by the numerical simulation
on the basis of forced Kuramoto-Sivashinsky equation.Comment: 6 pages (two columns), 11 eps. figures, late
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Methanethiol-dependent dimethylsulfide production in soil environments
Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 μmol DMS m−2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed ‘MddA’, which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells
e Glasgow and Manchester Experimental Cancer
Medicine Centres (ECMC), which are funded by CR-UK and the Chief Scientist’s Office (Scotland). We
acknowledge the funders who have contributed to this work: MRC stratified medicine infrastructure award
(A.D.W.), CR-UK C11074/A11008 (F.P., L.E.M.H., T.L.H., A.D.W.); LLR08071 (S.A.A., E.C.); LLR11017
(M.C.); SCD/04 (M.C.); LLR13035 (S.A.A., K.D., A.D.W., and A.P.); LLR14005 (M.T.S., D.V.); KKL690 (L.E.P.);
KKL698 (P.B.); LLR08004 (A.D.W., A.P. and A.J.W.); MRC CiC (M.E.D.); The Howat Foundation (FACS
support); Friends of Paul O’Gorman (K.D. and FACS support); ELF 67954 (S.A.A.); BSH start up fund (S.A.A.);
MR/K014854/1 (K.D.)
Transactional paths between children and parents in pediatric asthma: Associations between family relationships and adaptation
Introduction. The particular challenges posed by pediatric asthma may have a negative impact on the adaptation of children and their parents. From a transactional approach it is important to examine how reciprocal links between children and parents contribute to explain their adaptation and under which conditions these associations occur. This cross-sectional study aimed at examining the direct and indirect links between children’s and parents’ perceptions of family relationships and adaptation, separately (within-subjects) and across participants (cross-lagged effects), and the role of asthma severity in moderating these associations. Method. The sample comprised 257 children with asthma, aged between 8 and 18 years-old, and one of their parents. Both family members completed self-reported questionnaires on family relationships (cohesion and expressiveness) and adaptation indicators (quality of life and psychological functioning). Physicians assessed asthma severity. Structural Equation Modeling was used to test within-subjects and cross-lagged paths between children’s and parents’ family relationships and adaptation. Results. The model explained 47% of children’s and 30% of parents’ adaptation: family relationships were positively associated with adaptation, directly for children and parents, and indirectly across family members. Asthma severity moderated the association between family relationships and health-related quality of life for children: stronger associations were observed in the presence of persistent asthma. Conclusion. These results highlight the need of including psychological interventions in pediatric healthcare focused on family relationships as potential targets for improving children’s and parents’ quality of life and psychological functioning, and identified the children with persistent asthma as a group that would most benefit from family-based interventions.This study was supported by the R&D Unit Institute of Cognitive Psychology, Vocational and Social Development of the University of Coimbra (PEst-OE/PSI/UI0192/2011) and by the Portuguese Foundation for Science and Technology (PhD Grant SFRH/BD/69885/2010)
Executive Functioning, Treatment Adherence, and Glycemic Control in Children With Type 1 Diabetes
The primary aim of the study was to investigate the relationship among executive functioning, diabetes treatment adherence, and glycemic control.
Two hundred and thirty-five children with type 1 diabetes and their primary caregivers were administered the Diabetes Self-Management Profile to assess treatment adherence. Executive functioning was measured using the Behavior Rating Inventory of Executive Functioning and glycemic control was based on A1C.
Structural equation modeling indicated that a model in which treatment adherence mediated the relationship between executive functioning and glycemic control best fit the data. All paths were significant at P < 0.01.
These results indicate that executive functioning skills (e.g., planning, problem-solving, organization, and working memory) were related to adherence, which was related to diabetes control. Executive functioning may be helpful to assess in ongoing clinical management of type 1 diabetes
Lymphomas driven by Epstein-Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2
Epstein-Barr virus (EBV)-associated Burkitt's lymphoma is characterised by the deregulation of c-Myc expression and a restricted viral gene expression pattern in which the EBV nuclear antigen-1 (EBNA1) is the only viral protein to be consistently expressed. EBNA1 is required for viral genome propagation and segregation during latency. However, it has been much debated whether the protein plays a role in viral-associated tumourigenesis. We show that the lymphomas which arise in EµEBNA1 transgenic mice are unequivocally linked to EBNA1 expression and that both C-Myc and Mdm2 deregulation are central to this process. Tumour cell survival is supported by IL-2 and there is a skew towards CD8-positive T cells in the tumour environment, while the immune check-point protein PD-L1 is upregulated in the tumours. Additionally, several isoforms of Mdm2 are upregulated in the EµEBNA1 tumours, with increased phosphorylation at ser166, an expression pattern not seen in Eµc-Myc transgenic tumours. Concomitantly, E2F1, Xiap, Mta1, C-Fos and Stat1 are upregulated in the tumours. Using four independent inhibitors of Mdm2 we demonstrate that the EµEBNA1 tumour cells are dependant upon Mdm2 for survival (as they are upon c-Myc) and that Mdm2 inhibition is not accompanied by upregulation of p53, instead cell death is linked to loss of E2F1 expression, providing new insight into the underlying tumourigenic mechanism. This opens a new path to combat EBV-associated disease
Concurrent Validity of the Child Behavior Checklist DSM-Oriented Scales: Correspondence with DSM Diagnoses and Comparison to Syndrome Scales
This study used receiver operating characteristic (ROC) methodology and discriminative analyses to examine the correspondence of the Child Behavior Checklist (CBCL) rationally-derived DSM-oriented scales and empirically-derived syndrome scales with clinical diagnoses in a clinic-referred sample of children and adolescents (N = 476). Although results demonstrated that the CBCL Anxiety, Affective, Attention Deficit/Hyperactivity, Oppositional and Conduct Problems DSM-oriented scales corresponded significantly with related clinical diagnoses derived from parent-based structured interviews, these DSM-oriented scales did not evidence significantly greater correspondence with clinical diagnoses than the syndrome scales in all cases but one. The DSM-oriented Anxiety Problems scale was the only scale that evidenced significantly greater correspondence with diagnoses above its syndrome scale counterpart —the Anxious/Depressed scale. The recently developed and rationally-derived DSM-oriented scales thus generally do not add incremental clinical utility above that already afforded by the syndrome scales with respect to corresponding with diagnoses. Implications of these findings are discussed
HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia
Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression
- …
