29 research outputs found

    A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth.

    Get PDF
    Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an improved digital brain atlas of the spatiotemporal maturation of the fetal brain extending over the key developmental periods. We have developed an algorithm for construction of an unbiased four-dimensional atlas of the developing fetal brain by integrating symmetric diffeomorphic deformable registration in space with kernel regression in age. We applied this new algorithm to construct a spatiotemporal atlas from MRI of 81 normal fetuses scanned between 19 and 39 weeks of gestation and labeled the structures of the developing brain. We evaluated the use of this atlas and additional individual fetal brain MRI atlases for completely automatic multi-atlas segmentation of fetal brain MRI. The atlas is available online as a reference for anatomy and for registration and segmentation, to aid in connectivity analysis, and for groupwise and longitudinal analysis of early brain growth

    Learning to segment when experts disagree

    Get PDF
    Recent years have seen an increasing use of supervised learning methods for segmentation tasks. However, the predictive performance of these algorithms depend on the quality of labels, especially in medical image domain, where both the annotation cost and inter-observer variability are high. In a typical annotation collection process, different clinical experts provide their estimates of the “true” segmentation labels under the influence of their levels of expertise and biases. Treating these noisy labels blindly as the ground truth can adversely affect the performance of supervised segmentation models. In this work, we present a neural network architecture for jointly learning, from noisy observations alone, both the reliability of individual annotators and the true segmentation label distributions. The separation of the annotators’ characteristics and true segmentation label is achieved by encouraging the estimated annotators to be maximally unreliable while achieving high fidelity with the training data. Our method can also be viewed as a translation of STAPLE, an established label aggregation framework proposed in Warfield et al. [1] to the supervised learning paradigm. We demonstrate first on a generic segmentation task using MNIST data and then adapt for usage with MRI scans of multiple sclerosis (MS) patients for lesion labelling. Our method shows considerable improvement over the relevant baselines on both datasets in terms of segmentation accuracy and estimation of annotator reliability, particularly when only a single label is available per image. An open-source implementation of our approach can be found at https://github.com/UCLBrain/MSLS

    Robust Fusion of Probability Maps

    Get PDF
    International audienceThe fusion of probability maps is required when trying to analyse a collection of image labels or probability maps produced by several segmentation algorithms or human raters. The challenge is to weight properly the combination of maps in order to reflect the agreement among raters, the presence of outliers and the spatial uncertainty in the consensus. In this paper, we address several shortcomings of prior work in continuous label fusion. We introduce a novel approach to jointly estimate a reliable consensus map and assess the production of outliers and the confidence in each rater. Our probabilistic model is based on Student's t-distributions allowing local estimates of raters' performances. The introduction of bias and spatial priors leads to proper rater bias estimates and a control over the smoothness of the consensus map. Image intensity information is incorporated by geodesic distance transform for binary masks. Finally, we propose an approach to cluster raters based on variational boosting thus producing possibly several alternative consensus maps. Our approach was successfully tested on the MICCAI 2016 MS lesions dataset, on MR prostate delineations and on deep learning based segmentation predictions of lung nodules from the LIDC dataset

    Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation

    Get PDF
    Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study

    Three-dimensional hip cartilage quality assessment of morphology and dGEMRIC by planar maps and automated segmentation.

    Get PDF
    The quantitative interpretation of hip cartilage magnetic resonance imaging (MRI) has been limited by the difficulty of identifying and delineating the cartilage in a three-dimensional (3D) dataset, thereby reducing its routine usage. In this paper a solution is suggested by unfolding the cartilage to planar two-dimensional (2D) maps on which both morphology and biochemical degeneration patterns can be investigated across the entire hip joint

    Voxel-wise Comparison with a-contrario Analysis for Automated Segmentation of Multiple Sclerosis Lesions from Multimodal MRI

    No full text
    International audienceWe introduce a new framework for the automated and un-supervised segmentation of Multiple Sclerosis lesions from multimodal Magnetic Resonance images. It relies on a voxel-wise approach to detect local white matter abnormalities, with an a-contrario analysis, which takes into account local information. First, a voxel-wise comparison of multimodal patient images to a set of controls is performed. Then, region-based probabilities are estimated using an a-contrario approach. Finally, correction for multiple testing is performed. Validation was undertaken on a multi-site clinical dataset of 53 MS patients with various number and volume of lesions. We showed that the proposed framework outperforms the widely used FDR-correction for this type of analysis, particularly for low lesion loads
    corecore