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Abstract. The fusion of probability maps is required when trying to
analyse a collection of image labels or probability maps produced by
several segmentation algorithms or human raters. The challenge is to
weight properly the combination of maps in order to reflect the agree-
ment among raters, the presence of outliers and the spatial uncertainty
in the consensus. In this paper, we address several shortcomings of prior
work in continuous label fusion. We introduce a novel approach to jointly
estimate a reliable consensus map and assess the production of outliers
and the confidence in each rater. Our probabilistic model is based on
Student’s t-distributions allowing local estimates of raters’ performances.
The introduction of bias and spatial priors leads to proper rater bias es-
timates and a control over the smoothness of the consensus map. Image
intensity information is incorporated by geodesic distance transform for
binary masks. Finally, we propose an approach to cluster raters based
on variational boosting thus producing possibly several alternative con-
sensus maps. Our approach was successfully tested on the MICCAI 2016
MS lesions dataset, on MR prostate delineations and on deep learning
based segmentation predictions of lung nodules from the LIDC dataset.

Keywords: Image segmentation · data fusion · consensus · mixture.

1 Introduction

The fusion of probability maps is required to solve at least two important prob-
lems related to image segmentation. The former is to establish the underlying
ground truth segmentation given several binary or multi-class segmentations
provided by human raters or segmentation algorithms (e.g. in the framework
of multi-atlas segmentations). This is especially important because estimating
a consensus segmentation and the inter-rater variability is the gold standard in
assessing the performance of a segmentation algorithm in the absence of physi-
cal or virtual phantoms. The second related problem is the fusion of probability
maps that are outputted by several segmentation algorithms such as neural net-
works. Indeed, it has been shown experimentally that combining the outputs of
several segmentation algorithms often leads to improved performances [11].

Prior work has mainly focused on the fusion of binary masks, one of the
most well known method being the STAPLE algorithm [14]. In this case, the
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raters’ binary segmentations are explained by Bernoulli distributions from the
consensus segmentation and an Expectation-Maximization (EM) scheme allows
to jointly build a consensus and estimate the raters’ performances. Among known
shortcomings of STAPLE, there is the constraint of having only global perfor-
mance estimations of raters thus ignoring local variations [5,3]. One proposed
solution [5] is to perform a STAPLE in a sliding window fashion or to extend
the performance parameters to the pixel level [3]. Another limitation is that
STAPLE only considers binary masks as input thus being agnostic to the image
content and especially to the presence of large image gradients [4,10]. In [10],
it was proposed to include in the STAPLE approach simple appearance mod-
els such as Gaussian distributions for the background and foreground, but this
approach is only applicable to simple salient structures.

The extension of the STAPLE algorithm for continuous labels was proposed
in [15] where raters’ performances are captured by a set of biases and variances
while assuming a Gaussian distribution for the raters’ continuous labels. In [16],
it was observed that to properly estimate raters’ biases, the introduction of
a prior was required. Furthermore, no spatial prior is used to regularize the
consensus estimate and raters’ performances are assumed to be global to the
whole image.

In this paper, we introduce a comprehensive probabilistic framework that
addresses many shortcomings of prior work on the fusion of continuous or cat-
egorical labels. First, we allow for a spatial assessment of raters’ performances
by replacing Gaussian with Student’s t-likelihoods. Thus, image regions that
largely differ from the consensus segmentation will be considered as outliers.
Second, we introduce a bias prior and a label smoothness prior defined as a
generalized linear model of spatially smooth kernels. Third, the proposed frame-
work is posed within a proper metric, the Hellinger distance, in the space of
probability maps through the introduction of a square root link function. In ad-
dition, probability maps are created from segmentation binary masks by using
geodesic distance instead of Euclidean distance in order to take into account the
image content. Finally, we address the unexplored issue of dissensus rather than
consensus among raters. Indeed, fusing several probability maps into a single
consensus map may not be meaningful when consistent patterns appear among
raters. In [9], the worse performing raters’ masks were removed from the con-
sensus estimation process at each iteration. In [6], a comparison framework for
the raters’ maps based on the continuous STAPLE parameters was developed.
In our approach, several consensus are iteratively estimated through a technique
similar to variational boosting [12] and clusters of raters are identified.

We use variational Bayes (VB) inference to estimate the latent posterior dis-
tributions of variables and the unknown hyperparameters. The method has been
applied on two databases of human expert segmentations of prostate and mul-
tiple sclerosis (MS) lesions and on the fusion of deep learning probability maps
to segment lung nodules. We show that local variations of raters’ performances
were successfully identified and that improved segmentation performances were
obtained after fusing probability maps.



Robust Fusion of Probability Maps 3

2 Robust estimate of consensus probability map

2.1 Probabilistic framework

We are given as input a set of P probability maps Dp
n, each map consisting of N

categorical probability values in K classes, i.e. Dp
n ∈ SK−1 ∈ RK where SK−1 is

the K unit simplex space such that
∑K
k=1 Dp

nk = 1. Our objective is to estimate

a consensus probability map Tn ∈ [0, 1]K ,
∑K
k=1 Tnk = 1 over the input maps.

Each probability map is supposed to be derived from a consensus map through
a random process. We consider a link function F (p) ∈ RK , p ∈ SK−1 mapping
probability SK−1 space into the Euclidean space and its inverse F−1(r) such
that F−1(F (p)) = p. We write D̃p

n = F (Dp
n) and T̃n = F (Tn).

In [15,16], the observed probability maps D̃p were supposed to be Gaussian
distributed. In order to get a robust estimate of the consensus, i.e. to be able to
discard locally the influence of outliers, we replace the Gaussian assumption by
a Student’s t-distribution written as a Gaussian scale mixture:

p(D̃p
n|T̃n) =

∫ ∞
0

N (D̃p
n; T̃n + bp,

Σp

τpn
) Ga(τpn;

νp
2
,
νp
2

) dτ , (1)

where the bias bp and covariance Σp characterize the performance of the rater
p, and where Ga

(
τ ;

νp
2 ,

νp
2

)
is the Gamma distribution. The scale factors T p =

{τpn} ∈ R+N are additional latent variables that weight separately each data
point D̃p

n allowing to take into account local variations in the performances of
rater p. ν−1p characterizes the amount of data outliers that it is necessary to
discard in the estimation of the consensus. Finally, instead of the logit func-
tion as in [13], we propose to use the square root function Fsqrt((p1,p2)T ) =

(
√

p1,
√

p2)T , and its inverse F−1sqrt(r) =
(

r21
r21+r22

,
r22

r21+r22

)T
as a link function.

By doing so, the probability p(Dp
n|Tn) ∝ exp

(
−H

2(Dp
n,Tn)
σp

)
is related to the

Hellinger distance H2(Dp
n,Tn) on the space of probability distributions. Max-

imizing the likelihood reverts to minimizing distances between probability dis-
tributions.

Bias prior. In [16] it was showed that if no prior is provided on the bias, its
estimation is undetermined. Therefore we define a zero mean Gaussian prior on
the bias with precision β, i.e. p(bp|β) = N (b; 0, β−1IK).

Consensus smoothness prior. A reasonable assumption is that segmentation
probability maps are smooth. In [14], for categorical labels, a Markov random
field (MRF) was introduced to enforce the connexity of discrete label map. Yet,
the MRF hyperparameter β has to be set manually because its inference cannot
be done in closed form. For continuous labels, prior work [15] did not include
any smoothness prior. We introduce a smoothness prior defined as a generalized
linear model of a set of L spatially smooth functions {Φl(x)}, whose hyperpa-
rameters can be estimated. If xn ∈ Rd is the position of voxel n, then the prior
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on the variables T̃n is defined as p(T̃n|Wl) = N (T̃n;
∑L
l=1 Φl(xn)Wl; ΣT IK)

where Wl are vectors of size K and where ΣT ∈ R+ is the prior variance.
For computation convenience, we write the prior using Wk ∈ RL, such that
p(T̃nk|Wk) = N (T̃nk; WT

kΦn,ΣT ) where ΦTn = (Φ1(xn), · · · , ΦL(xn)). The
weights Wk are gathered in a weight matrix W ∈ RK×L such that we can
write p(T̃n|W) = N (T̃n; WΦn; ΣT IK). The weights Wk are equipped with a
zero mean Gaussian prior and precision α: p(Wk|α) = N (Wk; 0, α−1IL). The
graphical model of the framework is shown in Fig. 1a.

D̃p
n

T̃n

bp Σp

τpn

β

ν

Wlα ΣT

N P

L

(a)

D̃p
n

T̃nm

Zpm

πm

Σp

P

N

(b)

No SP

With SP

(c)

Fig. 1. Graphical model of the robust fusion framework (1a) and of the mixture of
consensuses (1b). Effect of the spatial prior on the consensus smoothness (1c).

Generation of probabilistic maps. Probabilistic maps are typically outputted by
segmentation algorithms, such as neural networks. They may be generated from
binary masks using log-odds maps [13] computed as the sigmoid of signed dis-
tance maps from each binary structure. Yet, this approach ignores the underlying
intensity image. We propose to compute a signed geodesic distance instead of
Euclidean distance in order to take image intensity information into account,
hence addressing a known shortcoming of STAPLE [4,10]. It is defined as a
combination of the Euclidean distance and intensity gradient information [8].

2.2 Bayesian inference

To estimate the consensus and learn the parameters governing raters’ perfor-
mances, we want to maximize the marginal log likelihood:

log p(D̃|β, νp,Σp) =

N∑
n=1

log

(∫
RK

P∏
p=1

[∫
RK

p(D̃p
n, T̃n,bp|β, νp,Σp) dbp

]
dT̃n

)
.

(2)

Previous approaches maximized this quantity using an EM algorithm requiring
to compute the posterior probability p(T̃n|D̃p

n,bp,Σp). It cannot be computed



Robust Fusion of Probability Maps 5

in closed form when replacing Gaussians with Student’s t-distributions. Instead,
we use a VB approach where a factorized posterior over all latent variables is
assumed: p(T̃,b, τ |D̃) ≈ qT̃(T̃)qb(b)qτ (τ). Those approximation functions are
estimated through a mean field approach which leads to closed form expressions.

The posterior approximation for the consensus map T̃n can be written as a
Gaussian distribution qT̃n

(T̃n) = N (T̃n;µT̃n
,ΣT̃n

) with ΣT̃n
=
[∑P

p=1 τ̂
p
n(Σp)

−1+

Σ−1T IK
]−1

and µT̃n
= ΣT̃n

[∑P
p=1 τ̂

p
nΣ−1p

(
D̃p
n − µbp

)
+ Σ−1T µWΦn

]
, where

τ̂pn = E[τpn], µbp
= E[bp] and µW = E[W]. The consensus is now computed

as a weighted mean of raters’ values, where the weights vary spatially through
τ̂pn according to the rater’s local performances. Likewise, qbp

is found to be

Gaussian distributed with covariance Σbp
=
[
βIK +

∑N
n=1 τ̂

p
nΣ−1p

]−1
and mean

µbp
= Σbp

∑N
n=1 τ̂

p
nΣ−1p

(
D̃np − E[T̃n]

)
. Update formula for the other variables

are reported in the supplementary material.

3 Mixture of consensuses

We now assume that the raters’ maps are derived from not a single butM consen-
sus maps. We introduce for each rater a new binary latent variable Zpm ∈ {0, 1},∑
m Zpm = 1, specifying from which consensus a rater map is generated. The

associated component prior is given by the mixing coefficients πm such that
p(Zpm = 1) = πm. We simplify the model by replacing the Student’s t by Gaus-

sian distributions and removing the bias, i.e. p(D̃p|T̃) =
∏
mN (T̃m,Σp)

Zpm .
The graphical model is presented in Fig. 1b.

Like in previous section, we use a VB to infer the consensus and model pa-
rameters. A naive solution would compute the posterior component probabilities
rpm (responsibilities) as a classical Gaussian mixture clustering problem with
multivariate Gaussians of dimension N thus leading to dubious results due to
the curse of dimensionality (high dimension, few samples). Instead, we propose
first to reduce the dimension of each map by applying a principal component
analysis (PCA) and then to cluster the maps in this low dimensional space. The
resulting consensus maps are obtained by applying the inverse mapping from
the components weights to the original space.

Variational calculus leads again to a Gaussian distribution for qT̃nm
(T̃nm),

with covariance ΣT̃nm
=
[∑P

p=1 rpm(Σp)
−1]−1 and mean µT̃nm

= ΣT̃nm

∑P
p=1 rpmΣ−1p D̃p

n.
The raters’ contributions to each consensus are now weighted by the responsi-
bilities rpm. Other update formulas are reported in the supplementary material.

This approach has been found experimentally to be very sensitive to the
initial values. To increase its stability we follow an incremental scheme inspired
by variational boosting [12]. We introduce one consensus map at a time and the
distribution parameters of components included in the previous iterations are not
updated. Initialization is performed at each iteration by summing the absolute
value of the residuals resp =

∑
n,m |D̃p

n− T̃nm| and setting the responsibility for

the new component to
resp∑
p resp

for rater p. Other responsibilities are uniformly
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initialized such that
∑
m rpm = 1. In practice, the algorithm is stopped when no

rater is added to the newly introduced component after convergence.

4 Results

4.1 Datasets

The proposed method was tested on 3 datasets: the MICCAI 2016 dataset of MS
lesions segmentations [7], prostate segmentations from a private database and
lung nodule segmentations from the LIDC dataset [2]. The first two datasets
include 7 (resp. 5) raters’ binary delineations for 15 (resp. 18) subjects. The
LIDC dataset comprises nodules delineations drawn by 4 radiologists on 888 CT
images. Only nodules annotated by at least 3 radiologists were considered. The
image set was split into 10 folds, one being kept separated for testing while the
rest was used to train 9 different segmentation networks by 9-fold cross validation
(CV). On the test set, only nodules of size above 10 mm were kept corresponding
to 34 nodules. Ground truth segmentations were defined as a majority voting
among raters.

4.2 Robust consensus estimate

We first demonstrate the estimation of a single consensus from 5 prostate de-
lineations produced by human experts. The input binary masks are converted
to probabilities using the geodesic distance transform and the sigmoid function.
Fig. 2a shows the 5 raters’ segmentations and the associated consensus as es-
timated by our approach. It can be seen that rater 3 seems to be an outlier
with respect to the other raters at the bottom of the image, although they agree
elsewhere. This local variation of the rater’s performance is captured by the
scale factor τpn that modulates spatially the contribution of each rater to the
consensus. In areas of poor rater’s performance, τ exhibits lower values which
correspond to larger rater’s variance. Locally, raters with weak confidence will
not contribute as much as others to the consensus. This is shown in Fig. 2b and
2c, where rater 3 has smaller τn values than rater 1 at the bottom of the image
(black arrows).

Converting binary masks to the continuous domain using a geodesic distance
allows to take image intensity information into account and leads to consensus
estimates more consistent with intensity boundaries (Fig. 3b). Moreover, the
introduction of a spatial prior over the consensus allows to control the smooth-
ness of the output (Fig. 1c). In practice, we use a dictionary of Gaussian bases
centered on a regular staggered grid. Key parameters are the spacing between
the bases centers, the standard deviations and the position of the origin basis.
Larger spacing and scales induce smoother contours in the final map.

Our algorithm is of specific interest when fusing probability maps outputted
by segmentation algorithms. For instance, we consider lung nodules probabilistic
segmentations given by 9 neural networks with a same U-Net architecture and
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Raters

0

1

2

3

4

consensus

(a) (b) (c)

Fig. 2. Fusion of prostate segmentation binary masks (2a). The outlier rater 3 exhibits
locally a higher variability linked to lower values of τn pointed by the black arrow (2b),
whereas rater 1 (2c) shows higher τn values in the same area.

Rater 0

Rater 1

Rater 2

Rater 3

(a) (b) (c) (d)

Fig. 3. Geodesic vs. Euclidean distance on radiologists’ delineations from LIDC (3a
and 3b). Networks probability maps fusion (3c). τn map for the network 6 with local
variability highlighted by the arrow (3d).

trained with 9-fold CV. Fig. 3c shows the 9 segmentations for a case with the
estimated consensus segmentation. Large discrepancies can be observed locally
between network 6 and the others, which is also captured by the scale factor
(Fig. 3d). To assess the performance of our method, we performed a comparison
study with prior works. Dice scores and Hausdorff distances were computed
between the estimated consensus and the ground truth defined as a majority
vote between the 4 radiologists (Fig. 4). Our proposed approaches are highlighted
in bold. Out of the 9 tested methods, STAPLE and majority vote use binary
masks and do not exploit the image content. Both are giving poorer results
than continuous methods. PSTAPLE (resp. continuous STAPLE) correspond to
the approach proposed in [1] (resp. [15]). Gaussian models correspond to the
same framework as ours, with Gaussian distributions replacing the Student’s t.
Models with Student’s t or Gaussian are all implemented with a spatial prior
unless stated otherwise. Consensuses produced with spatial regularization lead
to clearly better results. In PSTAPLE [1] the regularization is done by a MRF
for which the results were found to be sensitive to its parameters. Instead, our
approach allows to estimate automatically the spatial prior hyperparameter.
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As shown in Fig. 4, our proposed robust approach with Student’s t-distribution
leads to competitive results, with higher Dice scores, and lower Hausdorff dis-
tances, illustrating the relevance of our method.

Fig. 4. Dice score and Hausdorff distance distributions over the nodule test set. Left-
most values are the best results. Distributions marked with a ? are found significantly
different from the one given by our approach (“Student”) with the Wilcoxon signed-
rank test and p-value 0.05.

4.3 Mixture of consensuses

We assume here that raters’ masks can be derived from possibly several under-
lying ground truths rather than one. An example of mixture estimated from net-
works probability maps is given in Fig. 5. Three relevant components are selected
which differ in the region highlighted by the white arrow in Fig. 5b. Without
the mixture approach, only one consensus corresponding to the first component
would have been obtained and the region pointed by the arrow would have been
ignored. Thus, the mixture allows to enrich the representation and propose sev-
eral possible patterns by taking into account the residuals. A case where only
one component is retained in the model is shown in the supplementary material.

5 Conclusion

We presented a novel framework for the robust fusion of probabilistic segmen-
tation masks. Our method relies on Student’s t-distributions which allow to
take rater’s spatial uncertainty into account. All parameters of the model are
estimated automatically using Bayesian inference. Furthermore, the concept of
mixture of consensuses was explored, which allows to consider several patterns
among raters. The approach was tested on several datasets and produced com-
petitive results in comparison with other methods. We believe our method can be
a useful tool to combine probabilistic masks generated by different segmentation
algorithms.
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Fig. 5. Mixture of consensuses for a lung nodule. Input probabilistic masks (5a). Esti-
mated consensuses (5b). Responsibilities with 3 relevant components (5c).
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Paris, France

1 Variational updates

1.1 Robust estimate of consensus

The posterior approximation of τpn is a Gamma distribution qτp
n
(τpn) = Ga(τpn; anp, bnp)

with anp =
νp+K

2 and bnp =
νp
2 + 1

2 (D̃p
n − µT̃n

− µbp
)TΣ−1p (D̃p

n − µT̃n
− µbp

) +
Tr(Σ−1

p Σbp )+Tr(Σ−1
p ΣT̃n

)

2 .
If the spatial prior is included in the model, the posterior approximation

of Wk needs to be computed and is given by qWk
(Wk) = N (Wk;µWk

,ΣWk
),

where ΣWk
=
[
Σ−1T

(∑N
n=1 ΦnΦ

T
n

)
+ αIL

]−1
and µWk

= ΣWk

[∑N
n=1 ΦnΣ−1T µT̃nk

]
.

The posterior approximations qβ and qΣp are assumed to be Dirac distribu-
tions. The update formula for these parameters are found by deriving the lower

bound and equalling to zero, which gives β = PK
(∑P

p=1 Tr(Σbp) + µTbp
µbp

)−1
and Σp = N−1

(∑N
n=1(D̃p

n − µT̃n
− µbp)τ̂pn(D̃p

n − µT̃n
− µbp)T + τ̂pn(ΣT̃n

+ Σbp)
)

.

The posterior approximations qα and qΣT
are also assumed to be Dirac distri-

butions, leading to the update formula α = LK
(∑L

k=1 Tr(ΣWk
) + µTWk

µWk

)−1
and ΣT = (NK)−1

∑N
n=1

∑K
k=1

(
(µT̃nk

−ΦTnµWk
)2 + ΣT̃nk

+ Tr(ΦnΦ
T
nΣWk

)
)

.

Deriving likewise the lower bound with respect to the degrees of freedom
νp, they are found to be the solution of the following equation

∑N
n=1−ψ(

νp
2 ) +

log
νp
2 +1+E[log τpn]−E[τpn] = 0, with ψ being the digamma function. In practice,

the νp are updated by solving the equation numerically.

1.2 Mixture of consensuses

The label posterior is updated with qZpm
(Zpm) = rpm =

ρpm∑M
m=1 ρpm

, where

log ρpm = log πm+
∑N
n=1

(
−K2 log 2π − 1

2 log |Σp| − 1
2DΣp(D̃p

n − µT̃mn
)− 1

2 Tr(Σ−1p ΣT̃mn
)
)

.

DΣ(x) is the squared Mahalanobis distance, i.e. DΣ(x) = (x− µ)TΣ−1(x− µ).

The mixing coefficients πm are updated with πm = 1
P

∑P
n=1 rpm. Finally,

we update the covariance Σp of each rater with the following formula Σp =
1
N

(∑N
n=1

∑M
m=1 rpm

(
(D̃p

n − µT̃nm
)(D̃p

n − µT̃nm
)T + ΣTnm

))
.
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2 Supplementary figures

Fig. 1. Mixture of consensuses applied on a lung nodule (top row) and on MS lesions
(bottom row). 1 (resp. 2) components are found relevant on the top (resp. bottom)
row.

Fig. 2. Consensuses given by different methods on human raters’ prostate delineations.
Methods with spatial regularization (PSTAPLE and ours) produce smoother contours.
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