8 research outputs found

    110keV ~(56)Fe~(1+)离子注入麦胚中的能量沉积分布

    No full text
    测得110keV56Fe1+离子注入麦胚中的射程为257.1nm.根据测得的56Fe1+离子相对浓度随深度的分布和注入离子的总面密度,求得了56Fe1+离子绝对浓度随深度的分布.采用TRIM88程序计算得到了不同深度上注入离子的阻止本领,从而求得了随深度的能量沉积分布.并讨论了细胞损伤的可能机理

    低能重离子注入麦胚引起深层细胞损伤的一种物理机制

    No full text
    从核物理学原理出发,讨论了低能重离子注入麦胚造成深层细胞损伤的一种物理机制。主要是注入离子与小麦组成各元素发生相互作用后的次级过程,该过程产生了特征X射线,其中以能量较高(3.589keV),强度相对贡献较大的钾元素为例,当强度减弱为自己原来的2-10倍时,其穿越麦胚深度可达370um。这样的深度同文献[1]中讨论过的直接与间接作用范围相比可谓是“长射程”,小麦种子在深层能受到低能离子注入的影响,可能就是这种次级过程的“长射程效应”

    低能重离子注入麦胚引起深层细胞损伤的一种可能机制

    No full text
    讨论了低能重离子注入麦胚造成深层细胞损伤主要是注入离子与小麦组成各元素发生相互作用后的次级过程中产生了特征X射线。以能量较高(3.589keV)、强度相对贡献较大的钾元素为例,当强度减弱至原来的2-10时,其穿越麦胚深度可达370μm,可谓是“长射程”。小麦种子在深层能受到低能离子注入的影响,可能正是由于这种次级过程的“长射程效应”。The cell damage in deep layer of wheat embryo caused by the implanted low-energy heavy-ions can be attributed to the characteristic X-rays as a result of the interaction between the implanted ions and the component elements of wheat.Taking potassium as an example,its 3.589 keV characteristic X-rays can penetrate to a much deeper region in wheat embryo.At a depth of up to 370 μm its intensity drops only by a factor of 1000.It is the "long range effect" caused by the secondary process of heavy-ions that seems国家自然科学基

    氮离子束注入与贯穿小麦种子的生物效应初步研究

    No full text
    采用47.9MeV/u和20.4MeV/u14N(7+)离子束对小麦种子进行生物学效应研究。结果表明:1)重离子的贯穿和注入对小麦种子的生长势均有明显的抑制作用,剂量越大,抑制作用越强,而且注入作用高于贯穿;2)在种子的根尖细胞中出现的染色体畸变具有多种类型,畸变频率高于对照组198~592倍,而且注入比贯穿作用强;3)注入和贯穿处理两者同样有明显的诱变作用,可引起DNA的损伤和修复The biological effects of wheat seeds irradiated by 47.9 MeV/u and 20. 4 MeV/u 14N+7 ion beams were studied respectively .The results showed: (1 )The heavy ions of both penetration and implantation can all significantly inhibit growing power of wheat seeds. The greater dose is, the greater growing power is inhibited, and implantation influence on growing power is stronger than penetration.(2) In root tip cells of irradiated seeds, a great variety of chromosomal aberrations were observed, the aberration国家自然科学基金,“八五”重点课

    Hairpin Locked Nucleic Acids Probe Based Electrochemical Biosensor for Detection of BCR/ABL Fusion Gene

    No full text
    基于慢性粒细胞白血病中BCR/ABL融合基因的碱基序列,设计了一种新型发夹结构锁核酸(locked nucleic acids, LNA)探针,把LNA探针通过Au-s键固定在金电极表面构建了特异的生物传感器.LNA探针与目标链DNA杂交,以自行合成的苯甲酸二聚铜配合物([Cu2(C7H5O2)4(C2H6O)2], 简称[Cu(R)2]2+)为杂交指示剂,应用差示脉冲伏安法进行检测,表现出良好的响应信号.该新型锁核酸传感器能较好的区分完全互补链DNA、单碱基错配链DNA.对互补链DNA检测的线性范围为1.0×10-8~1.0×10-6 mol•L-1,检出限为2.0×10-9 mol•L-1.In this article, a new kind of structure hairpin LNA probe was designed to detect BCR/ABL fusion gene in Chronic Myelocytic Leukemia. The LNA probe was immobilized on the gold electrode(AuE) through sulfur–Au interaction to construct specific electrochemical biosensor. The electrochemical response of the sensor to hybridization of the LNA probe with the target DNA was studied using [Cu(R)2]2+ as an electrochemical indicator. The optimal condition was discussed. The experimental results indicated that in pH 7.4 PBS buffer solution, this new method has excellent specificity for single base mismatch and complementary after hybridization. The relationship between the increased oxidation peak current of [Cu(R)2]2+ and the concentration of complementary strand was linear in the range of 1.0×10-8~1.0×10-6 mol/L. The detection limit was 2.0×10-9 mol/L.国家自然科学基金项目(20675015),国家863计划(No. 2008AA02Z433),福建省自然科学基金(No.2010J06011, 2010J01032),福建省教育厅(No.JA10155),福建省高校产学研科技重点项目(2010Y4003)作者联系地址:福建医科大学药学院,福建 福州 350004Author's Address: College of Pharmacy, Fujian Medical University, Fuzhou 350004,China通讯作者E-mail:[email protected]

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore