8 research outputs found

    Research on man-machine interactive walking monitoring method for mobile robots and its application

    No full text
    由于行走监控在移动机器人技术中的独特地位和作用,使得其问题解决路线与最终性能极大地影响着构成系统的实用性及用户接受程度.本文通过剖析行走监控同其他模块的内在联系,深入地讨论了研究此问题的必要性和困难所在.最后,结合一个实际应用系统,给出了行之有效的指导思想、实现策略和关键问题解决途径

    AN EXPERIMENTAL NAVIGATION & MONITOR SYSTEM APPLICABLE TO AUTONOMOUS INTELLIGENT MOBILE ROBOT SYSTEM

    No full text
    文中重点讨论了系统实现过程中,任务分解与行走命令下达,时序分配与同步,路标定位与行走误差修正.动态障碍感知,测定与响应和特别情况紧急处理等难题的解决策略及遇到的问题

    Knowledge Representation Language NFA and Its Application in Expert System for Oil Log Interpretation

    No full text
    石油测井解释是一项逻辑推理和数值计算交错进行的复杂过程。为了描述测井解释专家的这种知识、经验并模拟其思维方式,在扩充纯产生式规则的基础上,我们开发了知识表达语言——NFA,它把逻辑推理和数值计算综合成统一的形式。石油测井解释专家系统 LIX 先后在 INTERDATA-85机和 PE-3230机上实现,现场(胜利油田)运行近两年,解释了130余口井,符合率94%以上。LIX 实质上是 NFA 语言的解释系统,它的研制成功,说明了 NFA 语言的有效性和实用性

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    Han and Xiongnu a Reexamination of Cultural and Political Relations (I)

    No full text
    corecore