40 research outputs found

    HYBRID ACCRETIONARY/COLLISIONAL MECHANISM OF PALEOZOIC ASIAN CONTINENTAL GROWTH: NEW PLATE TECTONIC PERSPECTIVE

    Get PDF
    Continental crust is formed above subduction zones by well-known process of “juvenile crust growth”. This new crust is in modern Earth assembled into continents by two ways: (i) short-lived collisions of continental blocks with the Laurussian or later Eurasian continent along the “Alpine Himalayan collisional/interior orogens” in the heart of the Pangean continental plates realm; and (ii) long lived lateral accretion of ocean-floor fragments along “circum-Pacific accretionary/peripheral orogens” at the border of the PaleoPacific and modern Pacific oceanic plate.Continental crust is formed above subduction zones by well-known process of “juvenile crust growth”. This new crust is in modern Earth assembled into continents by two ways: (i) short-lived collisions of continental blocks with the Laurussian or later Eurasian continent along the “Alpine Himalayan collisional/interior orogens” in the heart of the Pangean continental plates realm; and (ii) long lived lateral accretion of ocean-floor fragments along “circum-Pacific accretionary/peripheral orogens” at the border of the PaleoPacific and modern Pacific oceanic plate

    MELTING OF ACCRETIONARY WEDGE AND BUILDING MATURE CONTINENTAL CRUST: INSIGHTS FROM THE MAGMATIC EVOLUTION OF THE CHINESE ALTAI OROGEN, CENTRAL ASIA

    Get PDF
    Tectonic-magmatic reworking of accretionary wedges is a key process responsible for differentiation and stabilization of continental crustal in accretionary orogens. This generic problem can be exemplified by magmatic evolution of the Chinese Altai which represents a high-grade core of the world's largest accretionary system, namely the Central Asian Orogenic Belt (CAOB). In the Chinese Altai, voluminous SilurianDevonian granitoids intruding a greywacke-dominated Ordovician flysch sequence. These intrusions are classically interpreted to originate from predominant (70‒90 %) juvenile (depleted mantle-derived) magma. However, their close temporal and spatial relationship with the regional anatexis of flysch rocks, allows us to examine the possibility that they were mainly derived from flysch rocks.Tectonic-magmatic reworking of accretionary wedges is a key process responsible for differentiation and stabilization of continental crustal in accretionary orogens. This generic problem can be exemplified by magmatic evolution of the Chinese Altai which represents a high-grade core of the world's largest accretionary system, namely the Central Asian Orogenic Belt (CAOB). In the Chinese Altai, voluminous SilurianDevonian granitoids intruding a greywacke-dominated Ordovician flysch sequence. These intrusions are classically interpreted to originate from predominant (70‒90 %) juvenile (depleted mantle-derived) magma. However, their close temporal and spatial relationship with the regional anatexis of flysch rocks, allows us to examine the possibility that they were mainly derived from flysch rocks

    Tectonometamorphic evolution of the Rehamna dome (Morocco)

    Get PDF
    Volume: 42 Host publication title: The 2014 CETeG Conference "Lądek" Host publication sub-title: The Orlica-Śnieżnik Dome and the Upper Nysa Kłodzka Graben, the Sudetes 23-26 April 2014, Lądek Zdrój, Poland : Proceedings and Excursion GuideNon peer reviewe

    PTt history from kyanite-sillimanite migmatites and garnet-staurolite schists from the Bayankhongor area, Mongolia indicates suprasubduction switching from extension to compression during Rodinia assembly

    Full text link
    The tectonometamorphic evolution of the peri-Siberian tract of the Central Asian Orogenic Belt is mainly characterized by Baikalian Late Proterozoic - Early Cambrian cycle related to amalgamation of Proterozoic oceanic and continent fragments to Siberain landmass. Here we present in-situ monazite geochronology linked to P−T modelling of micashischsts and migmatite gneisses at the northern part of the Precambrian Baydrag block (central Mongolia) previously considered as a part of Baikalian metamorphic belt. Garnet-sillimanite-kyanite gneiss records first burial to the sillimanite stability at ~725 °C and 6.5 kbar, followed by burial to the kyanite stability at ~650 °C and ~8 kbar. The garnet-staurolite schist records burial to the staurolite-stability at ~620 °C and 6 kbar, followed by a nearly isothermal burial to ~580 °C and 9 kbar. The monazite data yield a continuum of 207Pb-corrected 238U/206Pb dates of c. 926−768 Ma in the Grt−Sil−Ky gneiss, and c. 937−754 Ma in the Grt-St schist. Based on monazite textural positon and internal zoning, the time of prograde burial and peak under a thermal gradient of 28-32 °C/km is estimated at c. 870−890 Ma. It is not clear whether such high grade conditions prevailed until a phase of further burial under a geothermal gradient of 18-22 °C/km and dated at 800−820 Ma. Additionally, monazite with dates of c. 568−515 Ma occurs as whole grains or as rims with sharp boundaries on Grenvillean monazite in Grt-St schist testifying for minor Baikalian overprint. Metamorphic zircon rims with Th/U ratio ~0.01-0.06 in Grt−Sil−Ky gneiss with 877 ± 7 Ma age, together with lower intercepts of zircon discordia lines in both Grt-Sil-Ky gneiss and Grt-St schist further support the Tonian age of high grade metamorphism. The P−T and geochronology data show anticlockwise P−T evolution from c. 930 to 750 Ma which is interpreted as a result of thickening of suprasubduction extensional and hot edifice - probably of back arc or arc type. This kind of prograde metamorphism was so far described only on the northern part of the Tarim block and interpreted as a result of initiation of peri-Rodinian subduction of Mirovoi Ocean. Here, we further discuss geodynamic consequences of a unique discovery of Tonian metamorphism in term of tectonic switch related to initiation of peri-Rodinian oceanic subduction during supercontinent assembly followed by strong mechanical coupling potentially related to onset of Rodinia splitting

    Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the European Variscides

    No full text
    International audienceThe classical concept of collisional orogens suggests that mountain belts form as a crustal wedge between the downgoing and overriding plates. However, this orogenic style is not compatible with the presence of (ultra-)high pressure crustal and mantle rocks far from the plate interface in the Bohemian Massif of Central Europe. Here we use a comparison between geological observations and thermo-mechanical numerical models to explain their formation. We suggest that continental crust was first deeply subducted, then flowed laterally underneath the lithosphere and eventually rose in the form of large partially molten trans-lithospheric diapirs. We further show that trans-lithospheric diapirism produces a specific rock association of (ultra-)high pressure crustal and mantle rocks and ultra-potassic magmas that alternates with the less metamorphosed rocks of the upper plate. Similar rock associations have been described in other convergent zones, both modern and ancient. We speculate that trans-lithospheric diapirism could be a common process

    Petrological evolution of a high-P migmatitic orthogneiss in Orlica–Śnieżnik Dome (NE Bohemian Massif)

    No full text
    International audience428Petrological evolution of a high-P migmatitic orthogneiss in Orlica–Śnieżnik Dome (NE Bohemian Massif)Carmen Aguilar ∗1, Francis Chopin 2, Pavla štípská 1,2, Karel Schulmann 1,2,Jean-Emmanuel Martelat 3, Pavel Pitra 41 Centre for Lithospheric Research, Czech Geological Survey (cz) – République tchèque2 IPG UMR 7516, Université de Strasbourg, ESPE – France3 Université Claude Bernard et ENS Lyon, LGL–CNRS UMR5276 – France4 Université Rennes 1, CNRS UMR 6118 – Université Rennes – FrancePetrological study and pseudosection modelling have been carried out in a high-grade orthogneisses of the southern domain of the Orlica–Snieznik Dome (NE Bohemian Massif). The studied samples are from an outcrop dominated by vertical foliation with gradual transition from mylonitic augen orthogneiss (Type I) to banded orthogneiss (Type II) with elongated cm-scale quartz and feldspar monomineral layers, passing to schlieren orthogneiss (Type III) with preserved felsic monomineral aggregates, and to nebulitic orthogniess (Type IV) with faint foliation marked by micas. The field and microstructural observations reveal a first subhorizontal foliation vertically folded and to various degrees reworked by a vertical foliation during E–W lateral shortening.The mineral assemblage of all types consists of biotite, phengite, garnet, quartz, K-feldspar and plagioclase, and accessory apatite, ilmenite, zircon and monazite. The transition from the Type I to IV is characterized by increasing nucleation of interstitial phases along like-like grain boundaries, by a decrease of grain size of all phases and by progressive disintegration of recrystallized K-feldspar grains by embayments of fine-grained myrmekite.In the mineral equilibria modelling, the core of garnet (alm0.58, py0.02-0.03, grs0.34, sps0.05) and phengite (Si = 3.38–3.20 p.f.u) is consistent with a P–T peak at 10–13 kbar and 720–750°C in the dominant the grt-bt-ph-rt-qtz-pl-kfs mineral assemblage. The garnet (alm0.68, py0.02-0.03, grs0.11, sps0.21) and white mica (Si = 3.10 p.f.u) rims together with unzoned biotite (XFe = 0.76–0.78) compositions match the modelled isopleths in the middle-P part of the grt-bt-ph-ilm-qtz-pl-kfs field to reach the solidus at 7–8 kbar and 630–650°C. In addition, the absence of prograde garnet zoning in the Type I to III suggests that the garnet was completely re-equilibrated during the retrograde history, whereas in the Type IV the HP garnet chemistry was preserved. This is discussed in frame of melt presence in different migmatite types along their P–T path. Based on the mineral equilibria modelling it is argued for fluid/melt-fluxed melting at HP conditions and on exhumation. The migmatite textural types are a result of grain-scale melt migration process and not of a localized melt transport in dykes as known from metasediments
    corecore