1,317 research outputs found

    A Comparison of Stealthy Sensor Attacks on Control Systems

    Full text link
    As more attention is paid to security in the context of control systems and as attacks occur to real control systems throughout the world, it has become clear that some of the most nefarious attacks are those that evade detection. The term stealthy has come to encompass a variety of techniques that attackers can employ to avoid detection. Here we show how the states of the system (in particular, the reachable set corresponding to the attack) can be manipulated under two important types of stealthy attacks. We employ the chi-squared fault detection method and demonstrate how this imposes a constraint on the attack sequence either to generate no alarms (zero-alarm attack) or to generate alarms at a rate indistinguishable from normal operation (hidden attack)

    Tuning Windowed Chi-Squared Detectors for Sensor Attacks

    Full text link
    A model-based windowed chi-squared procedure is proposed for identifying falsified sensor measurements. We employ the widely-used static chi-squared and the dynamic cumulative sum (CUSUM) fault/attack detection procedures as benchmarks to compare the performance of the windowed chi-squared detector. In particular, we characterize the state degradation that a class of attacks can induce to the system while enforcing that the detectors do not raise alarms (zero-alarm attacks). We quantify the advantage of using dynamic detectors (windowed chi-squared and CUSUM detectors), which leverages the history of the state, over a static detector (chi-squared) which uses a single measurement at a time. Simulations using a chemical reactor are presented to illustrate the performance of our tools

    On Reachable Sets of Hidden CPS Sensor Attacks

    Full text link
    For given system dynamics, observer structure, and observer-based fault/attack detection procedure, we provide mathematical tools -- in terms of Linear Matrix Inequalities (LMIs) -- for computing outer ellipsoidal bounds on the set of estimation errors that attacks can induce while maintaining the alarm rate of the detector equal to its attack-free false alarm rate. We refer to these sets to as hidden reachable sets. The obtained ellipsoidal bounds on hidden reachable sets quantify the attacker's potential impact when it is constrained to stay hidden from the detector. We provide tools for minimizing the volume of these ellipsoidal bounds (minimizing thus the reachable sets) by redesigning the observer gains. Simulation results are presented to illustrate the performance of our tools

    A family of smooth controllers for swinging up a pendulum

    Get PDF
    Es el primer envío que hago. Le agradeceré si me confirma que es todo correcto, especialmente el cumplimiento de los derechos de propiedad de la editorial. Mi email es [email protected] paper presents a new family of controllers for swinging up a pendulum. The swinging up of the pendulum is derived from physical arguments based on two ideas: shaping the Hamiltonian for a system without damping; and providing damping or energy pumping in relevant regions of the state space. A family of simple smooth controllers without switches with nice properties is obtained. The main result is that all solutions that do not start at a zero Lebesgue measure set converge to the upright position for a wide range of the parameters in the control law. Thus, the swing-up and the stabilization problems are simultaneously solved with a single, smooth law. The properties of the solution can be modified by the parameters in the control law. Control signal saturation can also be taken into account using the Hamiltonian approach.MCyT-FEDER DPI2006-0733

    Nonlinear Set Membership Regression with Adaptive Hyper-Parameter Estimation for Online Learning and Control.

    Get PDF
    Methods known as Lipschitz Interpolation or Nonlinear Set Membership regression have become established tools for nonparametric system-identification and data-based control. They utilise presupposed Lipschitz properties to compute inferences over unobserved function values. Unfortunately, it relies on the a priori knowledge of a Lipschitz constant of the underlying target function which serves as a hyperparameter. We propose a closed-form estimator of the Lipschitz constant that is robust to bounded observational noise in the data. The merger of Lipschitz Interpolation with the new hyperparameter estimator gives a new nonparametric machine learning method for which we derive sample complexity bounds and online learning convergence guarantees. Furthermore, we apply our learning method to model-reference adaptive control. We provide convergence guarantees on the closed-loop dynamics and compare the performance of our approach to recently proposed alternative learning-based controllers in a simulated flight manoeuvre control scenario

    Ajitts: adaptive just-in-time transaction scheduling

    Get PDF
    Lecture Notes in Computer Science 7891, 2013Distributed transaction processing has benefited greatly from optimistic concurrency control protocols thus avoiding costly fine-grained synchronization. However, the performance of these protocols degrades significantly when the workload increases, namely, by leading to a substantial amount of aborted transactions due to concurrency conflicts. Our approach stems from the observation that when the abort rate increases with the load as already executed transactions queue for longer periods of time waiting for their turn to be certified and committed. We thus propose an adaptive algorithm for judiciously scheduling transactions to minimize the time during which these are vulnerable to being aborted by concurrent transactions, thereby reducing the overall abort rate. We do so by throttling transaction execution using an adaptive mechanism based on the locally known state of globally executing transactions, that includes out-of-order execution. Our evaluation using traces from the industry standard TPC-E workload shows that the amount of aborted transactions can be kept bounded as system load increases, while at the same time fully utilizing system resources and thus scaling transaction processing throughput.(undefined

    A simplified IDA-PBC design for underactuated mechanical systems with applications

    Get PDF
    We develop a method to simplify the partial differential equations (PDEs) associated to the potential energy for interconnection and damping assignment passivity based control (IDA-PBC) of a class of underactuated mechanical systems (UMSs). Solving the PDEs, also called the matching equations, is the main difficulty in the construction and application of the IDA-PBC. We propose a simplification to the potential energy PDEs through a particular parametrization of the closed-loop inertia matrix that appears as a coupling term with the inverse of the original inertia matrix. The parametrization accounts for kinetic energy shaping, which is then used to simplify the potential energy PDEs and their solution that is used for the potential energy shaping. This energy shaping procedure results in a closed-loop UMS with a modified energy function. This approach avoids the cancellation of nonlinearities, and extends the application of this method to a larger class of systems, including separable and non-separable port-controlled Hamiltonian (PCH) systems. Applications to the inertia wheel pendulum and the rotary inverted pendulum are presented, and some realistic simulations are presented which validate the proposed control design method and prove that global stabilization of these systems can be achieved. Experimental validation of the proposed method is demonstrated using a laboratory set-up of the rotary pendulum. The robustness of the closed-loop system with respect to external disturbances is also experimentally verifie
    corecore