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We develop a method to simplify the partial differential equations (PDEs) associated to the potential
energy for interconnection and damping assignment passivity based control (IDA-PBC) of a class of
underactuated mechanical systems (UMSs). Solving the PDEs, also called the matching equations, is the
main difficulty in the construction and application of the IDA-PBC. We propose a simplification to the

appears as a coupling term with the inverse of the original inertia matrix. The parametrization accounts
for kinetic energy shaping, which is then used to simplify the potential energy PDEs and their solution
that is used for the potential energy shaping. This energy shaping procedure results in a closed-loop UMS
with a modified energy function. This approach avoids the cancellation of nonlinearities, and extends the
application of this method to a larger class of systems, including separable and non-separable port-
controlled Hamiltonian (PCH) systems. Applications to the inertia wheel pendulum and the rotary
inverted pendulum are presented, and some realistic simulations are presented which validate the
proposed control design method and prove that global stabilization of these systems can be achieved.
Experimental validation of the proposed method is demonstrated using a laboratory set-up of the rotary
pendulum. The robustness of the closed-loop system with respect to external disturbances is also
experimentally verified.

& 2015 Published by Elsevier Ltd. on behalf of European Control Association.
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1. Introduction

Control of underactuated mechanical systems (UMSs) has been
a central and challenging topic that has attracted a lot of interest.
UMSs, defined as systems that have fewer control inputs than the
degrees of freedom to be controlled, can model many interesting
applications including robotics, spacecraft, and satellites as well as
a benchmark to study complex nonlinear control systems. While
the absence of actuation in some degrees of freedom imposes a
challenging task to achieve the desired control objectives with a
lower number of actuators, underactuation control has the
advantages of reducing the cost and complexity of the control
system, and ensuring the functionality of a system in the case of
actuation failure [22]. However, the fact that UMSs have complex
internal dynamics and are not fully feedback linearizable compli-
cates the control design, because the nonlinear control methods
proposed for general mechanical systems cannot be applied
directly to this class of systems.
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Various nonlinear control techniques have been developed for
stabilization of UMSs (see [19] for a survey and [22] for a discus-
sion). Among the most popular techniques, passivity-based control
methods such as controlled Lagrangian [9] and the interconnec-
tion and damping assignment passivity based control (IDA-PBC)
[26] have proven to be powerful techniques due to their sys-
tematic and structure preserving approach, and the fact that they
capture the essential physical property of energy conservation
(passivity) [7,26]. A constructive stabilization method for a class of
UMSs based on a newly developed immersion and invariance (I&I)
technique has been proposed in [30], and a comparison between
the IDA-PBC and I&I methods for UMSs has been presented in [16].

IDA-PBC is a control design method formulated for systems
described by port-controlled Hamiltonian (PCH) models. The main
idea of this method is to assign a new (desired) closed-loop PCH
model that have certain features, utilizing the physically-inspired
principles of energy shaping, interconnection structure and
damping assignment (dissipation) [2]. The stabilization of an UMS
via IDA-PBC is usually achieved by shaping the kinetic and
potential energy functions and obtained through a state feedback
law. The existence of such law constitutes the matching conditions
of the IDA-PBC method which are a set of partial differential
equations (PDEs) [25].
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Solving these PDEs which identify the desired potential and
kinetic energy functions is the main obstacle in the applicability of
the IDA-PBC method. A number of constructive approaches to
solve or simplify these PDEs for different classes of UMSs have
been recently proposed in [2,7,14,20,25,38] and references therein.
Also, IDA-PBC has been applied to various underactuated systems,
such as pendulum on a cart [35], inertia wheel and ball and beam
systems [25], Pendubot [29] and Acrobot [20].

In this paper, we develop a constructive strategy to simplify
and solve the PDEs of IDA-PBC method for a class of UMSs with
underactuation degree one. The key idea is to parametrize the
desired inertia matrix that shapes the kinetic energy, and used it
to simplify the potential energy PDEs, and solve them to shape the
potential energy function, thus achieving total energy shaping.
That is, with suitable choice of the desired inertia matrix that must
be positive definite and in spirit of some physical considerations,
the potential energy PDE is simplified and its solution, the energy
function must have a minimum at the desired equilibrium point.
Furthermore, asymptotic stability is achieved by means of damp-
ing injection. This strategy expands the class of UMSs that can be
dealt with compared to those in [2]. That is, we have proposed
some design methods to deal with two groups of underactuated
PCH systems, namely, the separable PCH systems (systems with
constant inertia matrix) and non-separable PCH systems (systems
with non-constant inertia matrix). We apply our result to a sta-
bilization, as well as the swing up, of an inertia wheel pendulum
and a rotary inverted pendulum (Furuta pendulum) systems. The
later has relatively more complex dynamics than those of most
other commonly studied benchmark systems [22].

The main contributions of the paper are:

� A constructive method to solve the potential energy PDEs for
mechanical systems with underactuation degree one. The
motivation of this is because most position stabilization pro-
blems can be solved by shaping the potential energy function
[2]. For underactuated mechanical systems, kinetic energy
function also needs to be shaped. We have assigned the inertia
matrix that shapes the kinetic energy, and used it to simplify
the potential energy PDE, and solve them to shape the potential
energy function, thus reshaping the total energy function. While
most works in the literature use either normalized, linearized,
or partial feedback linearized model of the UMS to simplify the
problem, we have employed a full nonlinear model of the
system.

� The proof that our proposed controller design method ensures
an “almost” global asymptotic stabilization for the rotary
inverted pendulum in its full nonlinear dynamics. To the best of
our knowledge, this is the first work that achieves stabilization
of this system over the entire domain of attraction using IDA-
PBC. Also, it shows an “almost” global stabilization of the inertia
wheel pendulum using realistic model parameters.

� A successful implementation of the controller to balance a
laboratory rotary inverted pendulum hardware. The application
is modified to include a friction compensator which is excluded
throughout the PCH modelling.

� Robustness properties of our simplified IDA-PBC design with
respect to external disturbances are experimentally verified.
That is, we prove that the stability of the rotary inverted
pendulum is preserved, for a certain margin, with respect to
external disturbances.

Definitions and notations: The set of real and natural numbers
(including 0) are denoted respectively by R and N. Given an
arbitrary matrix G, we denote the transpose and the pseudo
inverse of G by G> and Gþ , respectively. G? denotes the full rank
left annihilator of G, i.e. G?G¼ 0. We denote an n� n identity
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
European Journal of Control (2015), http://dx.doi.org/10.1016/j.ejcon.
matrix with In. For any continuous function Hði; jÞ, we define
∇iHði; jÞ≔∂Hði; jÞ=∂i. ei; iAn≔f1;…;ng is the Euclidean basis vectors.
We use a standard stability and passivity definitions for nonlinear
systems [15]. The arguments of functions are often dropped
whenever they are clear from the context.

2. Problem formulation

We review the general procedure of the IDA-PBC design as has
been proposed for instance in [26,24]. Some existing methods to
solve the matching equations associated with the IDA-PBC are also
reviewed, highlighting some limitations of those methods. Con-
sider a PCH system whose dynamics can be written as

_q
_p

" #
¼

0 In
� In 0

" #
∇qH

∇pH

" #
þ

0
GðqÞ

" #
u;

y¼ G> ðqÞ∇pH; ð1Þ
where qARn; pARn are the states and u; yARm, mrn, are the
control input and the output, respectively. If m¼n the system is
called fully-actuated, while if mon it is called underactuated. The
Hamiltonian function, which is the total energy of the system, is
defined as the sum of the kinetic energy and the potential energy

Hðq; pÞ ¼ Kðq;pÞþV ðqÞ ¼ 1
2 pTM�1ðqÞpþVðqÞ; ð2Þ

where MðqÞ40 is the symmetric inertia matrix and V(q) is the
potential energy function. IDA-PBC consists of two parts, which
correspond to its design steps; the energy shaping and the
damping injection, i.e.

u¼ uesþudi: ð3Þ
Energy shaping: The main objective of IDA-PBC is to stabilize

the PCH system by state-feedback controller. This is achieved by
replacing the interconnection matrix and the energy function
(Hamiltonian) of the system with a desired one while preserving
the PCH form of the total system in closed-loop. This can be
mathematically expressed as

0 In
� In 0

" #
∇qH

∇pH

" #
þ

0
GðqÞ

" #
ues ¼

0 M�1Md

�MdM
�1 J2ðq;pÞ

" #
∇qHd

∇pHd

" #
:

ð4Þ
The desired total energy in closed-loop is assigned to be

Hdðq; pÞ ¼ Kdðq; pÞþVdðqÞ ¼ 1
2 pTM�1

d ðqÞpþVdðqÞ; ð5Þ
with Md ¼MT

d40 the desired inertia matrix and Vd(q) the desired
potential energy, such that Hd has an isolated minimum at the
desired equilibrium point qe, i.e.

qe ¼ arg min HdðqÞ ¼ arg min VdðqÞ: ð6Þ
The following conditions are required so that (6) holds:

Condition 2.1. Necessary extremum assignment: ∇qVdðqeÞ ¼ 0.

Condition 2.2. Sufficient minimum assignment: ∇2
qVdðqeÞ40; i.e.

the Hessian of the function at the equilibrium point is positive.

Eq. (4) constitutes the matching conditions of the IDA-PBC method
[26], which is a set of PDEs in the form of

G? ∇qH�MdM
�1∇qHdþ J2M

�1
d p

n o
¼ 0; ð7Þ

with J2 ¼ � JT2 a free parameter. PDEs (7) can be separated into two
elements; kinetic energy PDEs (dependent on p):

G? ∇qðpTM�1pÞ�MdM
�1∇qðpTM�1

d pÞþ2J2M
�1
d p

n o
¼ 0 ð8Þ

and potential energy PDEs (independent of p):

G? ∇qV�MdM
�1∇qVd

n o
¼ 0: ð9Þ
design for underactuated mechanical systems with applications,
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If these sets of PDEs (8) and (9) are solved, or in other wordsMd, Vd

and J2 are obtained, then ues is given by

ues ¼ ðG>GÞ�1G> ∇qH�MdM
�1∇qHdþ J2M

�1
d p

� �
¼ Gþ ∇qH�MdM

�1∇qHdþ J2M
�1
d p

� �
: ð10Þ

Damping injection: The next task after finding ues is to find the
damping injection (dissipation) controller, which is

udi ¼ �KvG
T∇pHd; Kv40 ð11Þ

to add the damping to the closed-loop system that ensures
asymptotic stabilization to the desired equilibrium. udi is applied
via a negative feedback of the passive output to achieve asympto-
tic stability, provided that the system is zero-state detectable. The
system (1) is called zero-state observable if uðtÞ ¼ yðtÞ ¼ 0; 8 tZ
0⟹ðqðtÞ; pðtÞÞ ¼ ðqe;0Þ. It is zero-state detectable if uðtÞ ¼ yðtÞ ¼ 0;
8 tZ0⟹limt-1ðqðtÞ;pðtÞÞ ¼ ðqe;0Þ.

Given a PCH system (1), by applying the IDA-PBC design we
obtain the following preserved PCH dynamics

_q
_p

" #
¼ 0 M�1Md

�MdM
�1 J2�Rd

" #
∇qHd

∇pHd

" #

yd ¼ G> ðqÞ∇pHd; ð12Þ
where Rd ¼ GKvG

> 40 is the dissipation matrix.

2.1. Total energy shaping

From the passivity-based control perspective, the natural way
to stabilize a mechanical system is by modifying/shaping its
energy function consisting of the kinetic and the potential func-
tions. The most important step in the design procedure is to shape
its potential energy function. This is due to several reasons; first,
the stability of the system is achieved through the potential energy
shaping [18,36]. That is, the energy of the mechanical system in its
balancing position is represented by the potential energy at the
coordinates qn [32]. Second, the qualitative behavior of the system
can be concluded from the features of the potential energy func-
tion. Third, most approaches that rely on kinetic energy shaping
only resulted in unsatisfactory stability and closed-loop perfor-
mance of the system. That is, stability is limited to a reduced
Domain of Attraction (DoA) or phase space. In [8,9] where the
method of controlled Lagrangian restricted to kinetic energy
shaping has been used, only local asymptotic stability has been
achieved (for instance in the inverted pendulum applications, only
the upper hemisphere of the DoA).

As for the Hamiltonian framework, where the IDA-PBC is the
most popular methodology used, the focus in most approaches has
been on solving the kinetic energy PDEs, by modifying the inter-
connection matrix Md and used it to produce the closed-loop
potential energy function Vd. As discussed in [2] (see Remark 7),
the restriction on Md in solving the kinetic energy PDEs limits
achieving global stability. This is evident by the reduced DoA
obtained in the cart pendulum system and Furuta pendulum sys-
tem applications in [2,38]. While the potential energy shaping is
sufficient in most regulation problems for mechanical systems, for
underactuated systems it is necessary also to shape the kinetic
energy function, thus achieving total energy shaping that enlarges
the class of systems that can be stabilized [25].

2.2. The matching equations

Some constructive techniques have been proposed in the lit-
erature, for instance in [2,7,14,38], to solve the matching equations
for various subclasses of PCH systems, imposing particular condi-
tions to satisfy. In [14], a method to reduce the kinetic energy PDEs
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
European Journal of Control (2015), http://dx.doi.org/10.1016/j.ejcon.
(8) to a simpler nonlinear ODEs has been proposed. This method
has been developed for a class of UMSs whose open-loop inertia
matrix M depends only on the non-actuated coordinate. The idea
is then to parametrize the closed-loop inertia matrix Md to follow
the structure of M and to use the free parameter matrix J2 to force
these equations to satisfy certain mathematical properties and
hence reducing these PDEs to several sets of nonlinear ODEs. This
procedure contributes to kinetic energy shaping. The assigned Md

which must be symmetric and positive definite is then substituted
into (9) to solve for Vd, i.e. potential energy shaping.

Another technique to simplify the kinetic energy PDEs has been
proposed in [7]. A notation of λ-Equations originally proposed in
[6] to triangulate a highly nonlinear system of PDEs into a set of
linear PDEs has been adopted to generate one quadratic PDE in
λ and subsequently a linear PDE in Md. This PDE has been solved
and the resulting Md is used in (9) to solve for Vd.

In [2], a constructive technique to solve the PDEs has been
suggested. In this method several conditions have been imposed
on M, G and V to simplify these PDEs. First, the system has
underactuation degree one and M does not depend on the unac-
tuated coordinate. This condition eliminates the first term (also
called the forcing term) in (8) which transforms this equation from
inhomogeneous to homogeneous PDEs. If the first condition is not
satisfied, a partial feedback linearization can be used. Then, para-
metrizing Md and partially parametrizing J2, in such a way so that
the PDEs (8) are transformed into a set of algebraic equation in the
(partially) unknown J2 for a fixed Md, will solve the kinetic energy
shaping problem (see Proposition 3 of [2]). The potential energy
shaping is then achieved by using the fixed Md and by imposing
that Md and Vd are both functions of one and the same actuated
coordinate. Inspired by the work of [2], several IDA-PBC controllers
have been proposed in [35,29,20,38], for various UMSs.

2.3. Simplifying the PDEs via change of coordinates

A common practice to simplify the PDEs is to employ a change
of coordinates (see for instance [2,25,38] and references therein).
In [25], a change of coordinates is used to simplify the description
of the dynamics of the inertia wheel pendulum, which is a
separable PCH system. In [38], the kinetic energy PDEs, which are
nonlinear and inhomogeneous, is simplified via a certain change of
coordinates that eliminates the forcing term in this set of PDEs,
making them homogeneous. This change of coordinates involves
replacing the momentum vector p by its corresponding quasi-
velocities. The method is known as quasi-linearization as it
involves elimination of the quadratic terms of the velocity
(resembles the linearization). As a result, the inertia matrix
becomes constant in the energy function i.e. the system is only
affected by the potential field [38]. In [11] and [37], some neces-
sary and sufficient conditions (such as, Riemannian curvature,
constant inertia matrix, skew-symmetry, and zero Christoffel
symbols) on the inertia matrix M have been given, which need to
be verified for the existence of such transformation. Although
these methods simplify the control problem, the application is
limited to the class of systems that admits quasi-linearization. For
example, the method in [38] cannot apply directly to the rotary
inverted pendulum.

Inspired by the discussion above, we propose a novel approach
to this control problem, concentrating our attention on simplifying
and solving the potential energy PDEs which implies modifying
the inertia matrix (notice that in (9), Md is the only term that can
be modified). By parametrizing Md that shapes the kinetic energy
function, one can use it to solve the potential energy PDEs rather
than focusing on finding the solution for the kinetic energy PDEs
itself.
design for underactuated mechanical systems with applications,
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3. Main results: simplifying the potential energy PDEs

In this section, we propose an alternative approach, focusing on
solving (9) the set of PDEs associated with the potential energy. In
[2], it was shown that the potential energy PDEs can be explicitly
solved, provided that the inertia matrix M and the potential
energy V depend only on the actuated coordinates. This method is
applicable only to a subclass of underactuated mechanical systems
that satisfy the following conditions:

Condition 3.1. The inertia matrix M and the potential energy func-
tion V do not depend on the unactuated coordinates.

Condition 3.2. The system has underactuation degree one, i.e.
m¼ n�1.

Violating Condition 3.1, the forcing term G?∇qðpTM�1pÞ in (8)
will not be eliminated and hence does not simplify the process of
solving the PDEs. In this work, we propose a new procedure to
relax Condition 3.1 (while Condition 3.2 is kept), with the impli-
cation to also extend the subset of underactuated systems that can
be treated using this method.

In the sequel, for the sake of the clarity of the constructive
presentation, we will focus our attention to systems with two
degrees of freedom (and underactuation degree one), i.e. n¼2,
m¼1. This is motivated by the fact that the majority of classical
underactuated control problems, such as those examples men-
tioned in Section 1 (see also the survey paper [19] for most com-
mon examples of UMSs) share this property. However, extending
our results to more general class of systems with underactuation
degree 1 is possible, although the formulation will be more com-
plicated. The following condition identifies the class of PCH sys-
tems that we consider in this paper:

Condition 3.3. The inertia matrix M and the potential energy
function V depends only on one coordinate, not necessarily the
actuated coordinate.

Condition 3.3 is a relaxation of Condition 3.1, in the sense that
this method can be applied to all cases; either (1)M is constant, (2)
M depends only on one, either actuated or unactuated, coordinate.
Without loss of generality, we assume that the unactuated coor-
dinate is q1 and hence G¼ e2 (G? ¼ e>

1 ), otherwise we may reor-
der the coordinates to come up with this structure.

Clearly, one source of difficulty in solving (9) arises from the
complex structure and, for many systems, the dependencies on q
of the inertia matrix, and hence its inverse. Recognizing that (9)
contains a coupling term (MdM

�1), we can simplify this PDE by
choosing Md with certain structure to allow the elimination of
some terms as follows.

Let the inertia matrix

MðqÞ ¼
k1ðq1Þ k2ðq1Þ
k2ðq1Þ k3ðq1Þ

" #
: ð13Þ

Denote its determinant as Δ≔detðMÞ ¼ k1ðq1Þk3ðq1Þ�k22ðq1Þ. By the
inclusion of Δ in the desired inertia matrixMd, or in other words by
choosing

MdðqÞ ¼
m1ðqÞ m2ðqÞ
m2ðqÞ m3ðqÞ

" #
¼Δ

m1 ðqÞ m2 ðqÞ
m2 ðqÞ m3 ðqÞ

" #
; ð14Þ

and suppose that Conditions 3.2 and 3.3 hold, (9) can then be
written as

1 0½ � ∇q1Vðq1Þ
0

� �
�

m1Δ m2Δ
m2Δ m3Δ

" # k3
Δ

�k2
Δ

�k2
Δ

k1
Δ

2
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3
775 ∇q1VdðqÞ

∇q2VdðqÞ

" #8>><
>>:

9>>=
>>;¼ 0;

ð15Þ
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which further gives

ðm1k3�m2k2Þ∇q1VdðqÞþð�m1k2þm2k1Þ∇q2VdðqÞ ¼∇q1Vðq1Þ:
ð16Þ

Notice that with this parametrization of Md, Δ is eliminated from
the potential energy PDE, which gives the first step of the
simplification.

In general, based on the forms of the inertia matrix, PCH sys-
tems, thus in our case the UMSs, can be classified into two groups
[17]: (I) separable UMSs, if the inertia matrix is constant i.e. M is
independent of the states (q, p), (II) non-separable UMSs, if
otherwise. Now, we will deal with each group separately.

3.1. Separable UMSs

An example of separable UMSs is the inertia wheel pendulum
(IWP) [34]. In some cases, a non-separable UMS model can be
transformed into a separable one via partial feedback linearization
[31] or a change of coordinates [22,37].

Because M is constant, we can choose Md to be also constant.
Hence, we can write (13) and (14) as

M¼
k1 k2
k2 k3

" #
; ð17Þ

Md ¼
m1 m2

m2 m3

" #
¼Δ

m1 m2

m2 m3

" #
: ð18Þ

Further simplification to (16) is achieved by choosing

m2 ¼
k2
k1
m1þε; ε40 ð19Þ

yielding

ðm1k3�m2k2Þ∇q1VdðqÞþεk1∇q2VdðqÞ ¼∇q1V ðq1Þ;

m1 k3�
k22
k1

 !
�εk2

 !
∇q1VdðqÞþεk1∇q2VdðqÞ ¼∇q1Vðq1Þ: ð20Þ

The general solution of this PDE is of the form

VdðqÞ ¼ Vdðq1ÞþΨ ðq2þπ1q1Þ; ð21Þ
where π1 is constant. The procedure can now be summarized in
the following proposition.

Proposition 3.1. Consider the separable underactuated PCH system
(1) satisfying Conditions 3.2 and 3.3. Let the inertia matrix M40 and
the parametrized desired inertia matrix Md40 take the form (17)
and (18), respectively. Then the potential energy PDE (9) can be
written in its simplified form (20) by choosing m2 ¼ ðk2=k1Þm1þε,
with a constant ε40. Furthermore, the solution of the potential
energy PDE is given by (21).□

Remark 3.1. The choice of m2 ¼ ðk2=k1Þm1þε in the separable
case is critical to make the potential energy PDE as simple as
possible. The fact that M is constant gives more freedom in para-
metrizing the matrix Md to assign mi, i¼ 1;2;3, where again the
parametrization is such that Md40 is symmetric and Vd admits a
minimum at the desired equilibrium point qe. Furthermore, since
M and Md are constant, we can choose J2 ¼ 0.

3.2. Non-separable UMSs

Non-separable UMSs are more complex. This class of systems
contains the majority of UMSs that frequently appear in applica-
tions. We proceed with our simplification by choosing

m2ðqÞ ¼
k2ðq1Þ
k1ðq1Þ

m1ðqÞ; ð22Þ
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Fig. 1. The inertia wheel pendulum.
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which simplifies (16) into

ðm1ðqÞk3ðq1Þ�m2ðqÞk2ðq1ÞÞ∇q1VdðqÞ ¼∇q1Vðq1Þ

m1ðqÞ k3ðq1Þ�
k22ðq1Þ
k1ðq1Þ

 !
∇q1VdðqÞ ¼∇q1Vðq1Þ; ð23Þ

which is then rewritten as

∇q1VdðqÞ ¼
∇q1V ðq1Þ

m1ðqÞπðq1Þ
; πðq1Þ ¼ k3�

k22
k1

 !
: ð24Þ

The obvious next step is to find m1ðqÞ (notice that ∇q1Vðq1Þ and
πðq1Þ are known) in (24) such that the solution of this potential
energy PDE guarantees that Vd has an isolated minimum. As M is a
function of q1 only, we can simply take Md as also a function of q1
only. Then, (24) can be solved as either ODE or PDE. However, we
have solved it as PDE for two reasons; first, to satisfy Conditions
2.1 and 2.2, and second, to keep track on the coordinate q2.

The solution of (24) is given by

VdðqÞ ¼
Z q1

0

∇xVðxÞ
m1ðxÞπðxÞ

dxþΨ ðq2Þ; ð25Þ

with Ψ ð�Þ an arbitrary differentiable function that must be chosen
to satisfy (6). This whole procedure can now be summarized in the
following proposition.

Proposition 3.2. Consider the non-separable underactuated PCH
system (1) satisfying Conditions 3.2 and 3.3. Let the inertia matrix
MðqÞ40 and the parametrized desired inertia matrix MdðqÞ40 take
the form (13) and (14), respectively. The potential energy PDE (9) can
then be written in its simplified form (24) by choosing
m2 ¼ ðk2=k1Þm1. Furthermore, the solution of the potential energy
PDE is given by (25).□

Remark 3.2. Using Propositions 3.1 and 3.2, PDEs (8) and (9) are
simplified and their general solutions depend on the dynamics of
the underactuated mechanical system. Clearly, the inclusion of the
determinant Δ is essential in the parametrization of Md. It sim-
plifies the PDEs by canceling out the term Δ from the denominator
of each element of M�1.

Remark 3.3. The elimination of the second term on the left hand
side of (16) by using (22) is critical to make the potential energy
PDE as simple as possible. The parametrization of Md to assign mi,
i¼ 1;2;3 depends mainly on the dynamics of the system. How-
ever, the choice of m1 and subsequently m2 and m3 is not free;
first, it should guarantee thatMd is symmetric and positive definite
(i.e. m140, and m34m2

2=m1). Then among the set of possible mi,
they should be chosen such that Vd satisfies Conditions 2.1 and 2.2.
Once all are satisfied, J2ðq; pÞ is brought into play.

Now, by Proposition 3.2, we have established the existence of a
solution for the potential energy PDE. It remains to verify the
existence of solution(s) to the kinetic energy PDEs (8), which is
essential to complete the kinetic energy shaping, and to find J2
that contributes to the last term on the right hand side of (10). As
Md has now been fixed, the kinetic energy PDEs (8) are no longer a
nonlinear and inhomogeneous PDE, but is an algebraic equation

G? f2J2M�1
d pg ¼ G? fMdM

�1∇qHd�∇qHg; ð26Þ
that can be solved to obtain J2.

Remark 3.4. The application of the result in [2] to a pendulum on
a cart, which is a non-separable system, requires partial feedback
linearization to satisfy Condition 3.1. Using Proposition 3.2, we can
provide a solution directly without linearization. Furthermore, our
proposed method is the first that guarantees an “almost” global
asymptotic stability of the cart pendulum system using IDA-PBC. In
Section 5 we will show as an application example a rotary inverted
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
European Journal of Control (2015), http://dx.doi.org/10.1016/j.ejcon.
pendulum that has a similar but more complex dynamics than a
pendulum on a cart. Note that for these types of systems, a global
stabilization cannot be achieved as the systems evolve on mani-
folds which are not diffeomorphic to the Euclidean space [3].

Eqs. (20) and (24) represent a simplified PDE which are applicable
to a wide range of UMSs such as an inertia wheel pendulum, a
pendulum on a cart, and a rotary pendulum. Case studies are
presented in Sections 4 and 5.
4. Separable Hamiltonian systems: the inertia wheel pendu-
lum example

In this section we apply the proposed design method to sta-
bilize at the upright position, an inertia wheel pendulum (IWP),
also known as a reaction wheel pendulum. IWP was first intro-
duced in [34], where a control design based on a partial feedback
linearization was proposed. Another approach based on global
change of coordinates to transform the dynamics of the system
into strict feedback form and then applying backstepping proce-
dure was presented in [22]. Energy-based approach was used in
[12]. IDA-PBC of IWP has been recently reported in [25], where a
change of coordinates and scaling have been used. Here, our
design method is applied without any change of coordinates or
scaling, simulating a practical set-up using parameters from a real
system.
4.1. IWP model

We use the model of the Quanser IWP module [10], whose
simplified free body diagram of the mechanical part is shown in
Fig. 1. The system comprises an unactuated planar inverted pen-
dulum with actuated symmetric wheel attached to the end of the
pendulum and is free to rotate about an axis parallel to the axis of
rotation of the pendulum. The system has two degrees-of-free-
dom; the angular position of the pendulum q1 and the angular
position of the wheel q2. As only the wheel is actuated, the system
is underactuated.
design for underactuated mechanical systems with applications,
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Table 1
The parameters of the inertia wheel pendulum.

Symb Description Value Unit

mp Mass of the pendulum 0.2164 kg
l Total length of the pendulum 0.2346 m
lc1 length to the pendulum center of mass 0.1173 m
Ip Moment of inertia of the pendulum 2:233� 10�4 kg m2

mw Mass of the wheel 0.0850 kg
Iw Moment of inertia of the wheel 2:495� 10�5 kg m2

g Gravitational acceleration 9.81 m/s2
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The Euler–Lagrange's equations of motion for the IWP are [25]:

a1þa2 a2
a2 a2

" #
€q1

€q2

" #
þ �a3 sin ðq1Þ

0

� �
¼ 0

1

� �
τ; ð27Þ

where a1 ¼mpl
2
c1 þmwl

2þ Ipþ Iw, a2 ¼ Iw, a3 ¼ gðmplc1 þmwlÞ and
the control input u¼ τ is the motor torque. The remaining para-
meters are listed in Table 1. The dynamic model of the IWP can be
written in PCH form (1) with n¼2, m¼1, G¼ e2 ¼ 0 1½ �> and

M¼
a1þa2 a2
a2 a2

" #
; Vðq1Þ ¼ a3ð cos ðq1Þþ1Þ:

4.2. Controller design

We apply Proposition 3.1 to design a controller for the IWP, to
swing up the pendulum by spinning the wheel and to asympto-
tically stabilize it at its upward position qe ¼ ð0; q2Þ for any
q2A ½0; 2π�. First the energy shaping controller ues is designed, and
then some damping is added to the closed-loop system by
designing the damping injection controller udi.

Reshaping the total energy: Following the procedures in Pro-
position 3.1, we fix Md in the form of

Md ¼Δ
m1

m1a2
a1þa2

þε

m1a2
a1þa2

þε m3

2
664

3
775 ð28Þ

where Δ¼ a1a2. With this choice of Md, and having G? ¼ ½1 0�, the
PDE (9) becomes

1 0½ � �a3 sin ðq1Þ
0

� �
�Δ

m1
m1a2
a1þa2

þε
m1a2
a1þa2

þε m3

2
664

3
775

a2
Δ

�a2
Δ

�a2
Δ

a1þa2
Δ

2
664

3
775 ∇q1Vd

∇q2Vd

" #8>><
>>:

9>>=
>>;¼ 0;

which further gives

m1a2�
m1a22
a1þa2

�εa2
� �

∇q1Vdþεða1þa2Þ∇q2Vd ¼ �a3 sin ðq1Þ:

Solving this PDE produces the desired potential energy

VdðqÞ ¼ �a3γ1 cos ðq1ÞþΨ ðxðqÞÞ; ð29Þ

xðqÞ ¼ q2þγ1εða1þa2Þq1; ð30Þ
with γ1 ¼ ða1þa2Þ=a2ðεða1þa2Þ�a1m1Þ40. The function Ψ ð�Þ in
(29) is an arbitrary differentiable function that must be chosen to
satisfy (6). This condition, along with the conditions m140 and
m1m34m2

2, is satisfied by choosing Ψ ðqÞ ¼ 1
2KpðxðqÞÞ2, where Kp4

0 is the gain of the energy shaping controller. Substituting all the
terms into (10), we obtain the energy shaping controller

ues ¼ γ2 sin ðq1ÞþKpγ3ðq2þγ1εða1þa2Þq1Þ; ð31Þ
with γ2 ¼ �m0γ1a2ðm2�m3Þ and γ3 ¼m2a2ðγ1�1Þþm3ða1þa2Þ
ð1�γ1a2Þ.

Damping assignment: The damping injection controller follows
the construction (11). Given Md that has been obtained when
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
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reshaping the total energy, we have

∇pHd ¼M�1
d p¼ Δ

Δd

m3 � m1a2
a1þa2

�ε

� m1a2
a1þa2

�ε m1

2
664

3
775 p1

p2

" #

¼ Δ
Δd

m3p1�
m1a2
a1þa2

þε
� �

p2

� m1a2
a1þa2

þε
� �

p1þm1p2

2
6664

3
7775 ð32Þ

with Δd ¼ detðMdÞ ¼Δ2ðm1m3�m2
2Þ. Substituting (32) into (11), the

damping injection controller is then

udi ¼ �Kv
Δ
Δd

� m1a2
a1þa2

þε
� �

p1þm1p2

� �
: ð33Þ

We can conclude the IDA-PBC design for the IWP by the following
corollary.

Corollary 4.1. The state feedback controller (31), (33) with Kp40,
Kv40 and m34m2

2=m1, is an asymptotically stabilizing controller
for the IWP (27) at its unstable equilibrium point q¼ ð0; q2Þ for any
q2A ½0; 2π�.□

Proof of Corollary 4.1. The proof can be established by verifying
that Vd satisfies Conditions 2.1 and 2.2, and Md ¼M>

d is positive
definite. Thus, Hd qualifies as a Lyapunov function. Moreover,
asymptotic stability is proved invoking LaSalle's invariance prin-
ciple (see the proof of Corollary 5.1).□

4.3. Simulation results

Some simulation results are obtained by applying the controller
(31), (33) to the inertia wheel pendulum model. In all simulations,
the initial condition ½q0; p0� ¼ ½π;0;0;0:05�, i.e. the pendulum
vertical downward position, is used. The parameters and gains for
the stabilizing IDA-PBC controller are m1¼0.7, m3¼3.48 and ϵ¼1.

Fig. 2 shows the response for different values of Kp, with
Kv ¼ 2� 10�5. Their corresponding control inputs are shown in
Fig. 3. As shown, the pendulum asymptotically converges toward
its upward position, from its downward position, i.e. almost global
stabilization. Observe that the states converge faster for small Kp,
while high-gain controller causes more oscillations.

Figs. 4 and 5 illustrate the effect of varying the damping gain Kv

for a constant Kp¼0.3. As expected, increasing this damping gain
leads to achieving faster convergence with less oscillations.
5. Non-separable Hamiltonian systems: the rotary inverted
pendulum example

In this section, we illustrate the effectiveness of our proposed
method applied to a more complex structure of UMSs, the non-
separable systems, using a rotary inverted pendulum. We show
that this technique reduces the design complexity, while at the
same time preserves the effectiveness of the IDA-PBC to asymp-
totically stabilize the pendulum at its upright position.

The control of a rotary inverted pendulum has been classically
approached via switching between two controllers. The first con-
troller swings the pendulum up close to its upright position from
its downward position, and usually designed using energy based
techniques [5]. At this point, the second, a balancing controller –

often a linear controller – is applied to stabilize the pendulum at
the desired upright position. Some energy based methods to
control this system have been proposed in the literature such as a
swing-up control law for general pendulum-like systems [5],
energy-based controller involving passivity to enforce the system
design for underactuated mechanical systems with applications,
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to converge to its homoclinic orbit [13], and a strategy based on
controlled Lagrangian framework [21], to mention a few.

Two works have been reported for the control of this system
within the PCH structure; in [4], a method which incorporates
shaping the ‘normalized’ Hamiltonian function of the system and
energy damping/pumping has been developed. In [38], the IDA-
PBC method is adopted, and the simplification of the kinetic
energy PDEs has been achieved using quasi-linearization. In this
example, we apply Proposition 3.2, exploiting the full nonlinear
dynamics of the rotary inverted pendulum.

5.1. Rotary inverted pendulum model

We use the Quanser QUBE-Servo inverted pendulum module,
as shown in Fig. 6 together with the simplified free body diagram
of its mechanical part. This system consists of an inverted pen-
dulum which is attached at the end of a motor-driven horizon-
tally-rotating arm. The pendulum is also free to rotate in a vertical
plane. Thus, the system has 2-DOF: the angular position of the arm
(α) and the angular position of the pendulum (θ). This system is
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
European Journal of Control (2015), http://dx.doi.org/10.1016/j.ejcon.
underactuated because only the arm is subjected to an input tor-
que (applied by a DC motor). The parameters along with their
physical values are listed in Table 2.

The equations of motion of the system can be derived from the
standard Euler–Lagrange method as [27]:

�1
2 mpLpLr cos ðαÞ €θþ Jpþ1

4 mpL
2
p

� �
€α�1

2 mpLpg sin ðαÞ

�1
4 mpL

2
p cos ðαÞ sin ðαÞ _θ2 ¼ �Bp _α ð34Þ

JrþmpL
2
r þ1

4 mrL
2
r þðJpþ1

4 mpL
2
pÞ sin 2ðαÞ

� �
€θ�1

2 mpLpLr cos ðαÞ €α
þ1

2 mpLpLr sin ðαÞ _α2þ1
2 mpL

2
p cos ðαÞ sin ðαÞ _θ _α ¼ τ�Br

_θ : ð35Þ

To apply the IDA-PBC design, we need to obtain the PCH repre-
sentation of the system. We define the generalized coordinate q to
be q¼ ½q1 q2�> ¼ ½α θ�> and introduce the shorten notations for
the parameters

γ ¼ Jpþ1
4 mpL

2
p; ρ¼ JrþmpL

2
r þ1

4 mrL
2
r ; σ ¼ 1

2 mpLpLr ; κ ¼ 1
2 mpgLp:

Applying Newton's Second Law for rotational motion while
ignoring the effect of friction, from (34) and (35) we extract the
inertia matrix

MðqÞ ¼
γ �σ cos ðq1Þ

�σ cos ðq1Þ ρþγ sin 2ðq1Þ

" #
; ð36Þ

and also the potential energy of the system

Vðq1Þ ¼ κ 1þ cos ðq1Þ
� 	

: ð37Þ
The Hamiltonian function of the system can then be obtained
using (2). Moreover, the PCH model of the rotary pendulum can be
described by (1) with u¼ τ, and the input matrix G¼ e2 ¼ 0 1½ �> .

5.2. Controller design

We apply the procedure given in Section 3, in particular Pro-
position 3.2, to design the controller for the system. The main
objective is to asymptotically stabilize the rotary inverted
design for underactuated mechanical systems with applications,
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pendulum at its unstable equilibrium point qe ¼ ð0; q2Þ for any
q2A ½0;2π�. First we design the energy shaping controller ues and
then add the damping to the closed-loop system by designing the
damping injection controller udi.

Reshaping the total energy: We start with parametrizing the
inertia matrix Md, then solve the PDE of the potential energy. From
(36), we obtain the inverse inertia matrix

M�1ðqÞ ¼ 1
Δ

ρþγ sin 2ðq1Þ σ cos ðq1Þ
σ cos ðq1Þ γ

" #
; ð38Þ

where Δ¼ detðMÞ ¼ γρþγ2 sin 2ðq1Þ�σ2 cos 2ðq1Þ. Because M
depends on q1, it is clear that M

�1 is a complicated matrix. Solving
directly the PDEs (8)–(9) will require also tedious computations
that will lead to an unreasonable form of the controller.
131
132
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Applying Proposition 3.2, with G? ¼ ½1 0�, the potential energy
PDE (9)

1 0½ � �κ sin ðq1Þ
0

� �
�Δ

m1ðq1Þ m2ðq1Þ
m2ðq1Þ m3ðq1Þ

" #(

�1
Δ

ρþγ sin 2ðq1Þ σ cos ðq1Þ
σ cos ðq1Þ γ

" #
∇q1Vd

∇q2Vd

" #)
¼ 0;

can be written in its simplest form

∇q1Vd ¼ �γκ sin ðq1Þ
m1Δ

; ð39Þ

by choosing m2 ¼ ðk2=k1Þm1, and including Δ¼ detðMÞ ¼ γρþγ2

sin 2ðq1Þ�σ2 cos 2ðq1Þ in the expression of Md. The solution for the
PDE (39) is given by

VdðqÞ ¼ �γκ
Z q1

0

sin ðxÞ
m1ðxÞΔðxÞ

dxþΨ ðq2Þ; ð40Þ

where the function Ψ ð�Þ is an arbitrary differentiable function that
must be chosen to satisfy (6). The second step is to fix m1 in (39)
such that the solution of this PDE satisfies Conditions 2.1 and 2.2.
Notice that M is a function of q1 only, hence, we can simply take
Md as a function of q1 too. Among the possible choices, we have
fixed the desired inertia matrix as

MdðqÞ ¼Δ
ð cos ðq1ÞþϵÞ �σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
�σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
m3

2
6664

3
7775;
ð41Þ

choosing ϵ4maxj cos ðq1Þj ¼ 1 to guarantee m140, and hence
Md40 8 q1A ½0;2π�. Then, the desired potential energy function
Vd is computed (using Maple software) as

VdðqÞ ¼ λ1 �λ2 tanh
�1 λ2 cos ðq1Þ
� 	þ ln cos ðq1Þþϵ

� 	� �
þΨ ðq2Þ;

ð42Þ
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Fig. 6. Quanser QUBE-Servo inverted pendulum system [27].

Table 2
The parameters of the Quanser QUBE-Servo inverted pendulum.

Symbol Description Value Unit

mp Mass of pendulum 0.024 kg
Lp Total length of pendulum 0.129 m
Jp Moment of inertia of pendulum 3:33� 10�5 kg m2

mr Mass of arm 0.095 kg
Lr Total length of arm 0.085 m
Jr Moment of inertia of arm 5:72� 10�5 kg m2

v Output Voltage range 710 volt
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with

λ1 ¼
κγ

γρþγ2�σ2ϵ2�γ2ϵ2
40; λ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2þσ2

γðρþγÞ

s
; ð0oλ2o1Þ:

The function Ψ ð�Þ is an arbitrary differentiable function that
must be chosen to satisfy (6). This condition, along with the con-
ditions m140 and m1m34m2

2, is satisfied by choosing
Ψ ðq2Þ ¼ 1

2Kpq22, where Kp40 is the gain of energy shaping
controller.

Remark 5.1. For this particular design, we have fixed
m1 ¼ cos ðq1Þþϵ. The term cos ðq1Þ ensures that Vd is minimum at
qe, and ϵ is added to guarantee the positive definiteness of Md in
the whole DoA.

Now, using (26) we compute J2, which after lengthy but straight-
forward calculations is obtained as

J2 ¼
0 j2
� j2 0

" #
; ð43Þ

where,

j2 ¼
KjγΔd

2Δ
ðφB1�A1Þp21þ2ðφB2�A2Þp1p2þðφB3�A3Þp22
� 	

cos ðq1Þþϵ
� 	

σ cos ðq1Þp1þγp2
� 	 ð44Þ

with Kj40, and

A1 ¼
sin ð2q1Þ
Δ2 γΔ� ρþγ sin 2ðq1Þ

� �
ðγ2þσ2Þ

� �
;

A2 ¼ �σ sin ðq1Þ
Δ2 Δþ2 cos 2ðq1Þðγ2þσ2Þ� 	

;

A3 ¼ �γðγ2þσ2Þ sin ð2q1Þ
Δ2 ;
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
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B1 ¼
m3 sin ðq1Þ

ðγΔdÞ2
�2γ2Δd cos ðq1Þðγ2þσ2ÞþΔ3 m3γ2�ϵσ2 cos 2ðq1Þ

��

�σ2 cos 3ðq1Þ
	�σ2Δ3 cos ðq1Þ ϵþ cos ðq1Þ

� 	
2ϵþ3 cos ðq1Þ
� 	�

;

B2 ¼ � σ sin ðq1Þ ϵþ cos ðq1Þ
� 	

γΔd m3γ2�ϵσ2 cos 2ðq1Þ�σ2 cos 3ðq1Þ
� 	 σ2Δ cos 2ðq1Þ 2ϵð�

þ3 cos ðq1Þ
	þ 2 cos 2ðq1Þðγ2þσ2ÞþΔ
� 	

m3γ2�ϵσ2 cos 2ðq1Þ
�

�σ2 cos 3ðq1Þ
	�

;

B3 ¼ � sin ðq1Þ cos ðq1Þ ϵþ cos ðq1Þ
� 	

Δd m3γ2�ϵσ2 cos 2ðq1Þ�σ2 cos 3ðq1Þ
� 	� 2ðγ2þσ2Þ m3γ2

��

�ϵσ2 cos 2ðq1Þ�σ2 cos 3ðq1Þ
	þσ2Δ 2ϵþ3 cos ðq1Þ

� 	�
;

φ¼ cos ðq1Þþϵ
� 	

ρþγ sin 2ðq1Þ�
σ2 cos 2ðq1Þ

γ

� �
;

and Δd ¼ detðMdÞ ¼ ðΔ2
=γ2Þ cos ðq1Þþϵ

� 	
m3γ2�σ2 cos 2ðq1Þ cosð�

ðq1ÞþϵÞÞ. Substituting all terms into (10), the energy shaping
controller is obtained as

ues ¼ �σ cos ðq1Þ
γ

γm3� ρþγ sin 2ðq1Þ
� �

ϵþ cos ðq1Þ
� 	� � B1

2
p21

�

þB2p1p2þ
B3

2
p22þ

ϵλ1λ
2
2 sin ðq1Þ

1�λ22 cos 2ðq1Þ
� λ1 sin ðq1Þ
ϵþ cos ðq1Þ

!

� γm3�
σ2 cos 2ðq1Þð cos ðq1ÞþϵÞ

γ

� �
Kpq2� j2

Δ
γΔd

γm3p1
�

þσ cos ðq1Þ cos ðq1Þþϵ
� 	

p2
	
: ð45Þ

Damping assignment: The damping injection controller follows the
construction (11). Given Md that has been obtained when reshap-
ing the total energy, we have

∇pHd ¼M�1
d p¼ Δ

Δd

m3
σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
ϵþ cos ðq1Þ

2
6664

3
7775

p1
p2

" #

¼ Δ
Δd

m3p1þ
σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
p2

σ cos ðq1Þð cos ðq1ÞþϵÞ
γ

p1þð cos ðq1ÞþϵÞp2

2
6664

3
7775: ð46Þ

Substituting (46) into (11), the damping injection controller is
design for underactuated mechanical systems with applications,
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obtained as

udi ¼ �KvΔ cos ðq1Þþϵ
� 	
γΔd

σ cos ðq1Þp1þγp2
� 	

: ð47Þ

Now, we can conclude the IDA-PBC controller design for our rotary
inverted pendulum by stating the following corollary.

Corollary 5.1. The state feedback controller (45), (47), with
m34 ð cos ðq1ÞþϵÞσ2 cos 2ðq1Þ=γ2, ϵ41 and Kp;Kv;Kj40 is an
asymptotically stabilizing controller for the rotary pendulum system
(34)–(35) at its unstable equilibrium point q¼ ð0; q2Þ for any
q2A ½0; 2π�.□

Proof of Corollary 5.1. The proof of Corollary 5.1 is discussed next
in Section 5.3.□

5.3. Stability analysis

As mentioned earlier (see also Proposition 1 in [2]), one
important property of the IDA-PBC method is that the closed-loop
energy function Hdðq; pÞ qualifies as a Lyapunov function candidate
Wðq; pÞ, thus has a stable equilibrium point at ðqe;0Þ. For this to
apply, Hdðq; pÞ itself must satisfy two conditions: (1) Md is positive
definite and symmetric, and (2) the closed-loop potential energy
function Vd must have an isolated minimum at this equilibrium.
Moreover, this equilibrium is asymptotically stable provided that
the closed-loop system satisfies the detectability condition from
the output yd ¼ G>∇pHd.

As explained through the design procedures, a sufficient con-
dition to guarantee the positive definiteness of Md in (41) is that
m140 and m1m34m2

2. The earlier is achieved by assigning m1 ¼
ð cos ðq1ÞþϵÞ with ϵ4 cos ðq1Þ

�� ��. By choosing m3 such that it
satisfies the condition m34 ϵþ cos ðq1Þ

� 	
σ2 cos 2ðq1Þ=γ2, for

instance m3≔ð cos ðq1ÞþϵÞσ2 cos 2ðq1Þ=γ2þμ with a constant
μ40, the latter condition is also achieved. Finally, it is clear that
Md is symmetric since the elements m12 ¼m21≔m2.

To prove the assignment of the minimum of the potential
energy

qe ¼ arg min HdðqÞ ¼ arg min VdðqÞ;
wewill show that Conditions 2.1 and 2.2 are satisfied. The gradient
of Vd is

∇qVd ¼ λ1 sin ðq1Þ
ϵðσ2þγ2Þ

γðρþγÞ�ðσ2þγ2Þ cos 2ðq1Þ
� 1
ðϵþ cos ðq1ÞÞ

Kpq2

2
64

3
75:

Solving at qe ¼ ð0;0Þ yields ∇qVd j qe ¼ ½0 0�> . Hence, Condition 2.1
is satisfied. To verify that the Hessian of Vd is positive definite, we
evaluate

∇2
qVd ¼ diag ð∇2

qVdÞ11; Kp

h i
; ð48Þ

where

ð∇2
qVdÞ11 ¼

λ1 cos ðq1Þϵðσ2þγ2Þ
γðρþγÞ�ðσ2þγ2Þ cos 2ðq1Þ

� λ1 cos ðq1Þ
ϵþ cos ðq1Þ
� 	

 !

� 2ϵ cos ðq1Þðσ2þγ2Þ2λ1 sin 2ðq1Þ
γðρþγÞ�ðσ2þγ2Þ cos 2ðq1Þ
� 	2 þ λ1 sin 2ðq1Þ

ϵþ cos ðq1Þ
� 	2

 !
;

at qe, thus we obtain

∇2
qVd j qe ¼ diag λ1

ϵðσ2þγ2Þ
γρ�σ2 � 1

ϵþ1ð Þ

� �
; Kp

� �
; ð49Þ

which is positive definite for Kp; λ140 and ϵ41.
Notice that ϵ41 in (49) guarantees that ϵðσ2þγ2Þ=ðγρ�σ2Þ4

1= ϵþ1ð Þ. Hence Condition 2.2 also holds. Since all conditions are
satisfied, we can conclude that Hd qualifies as a Lyapunov function,
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
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i.e.

Hdðq; pÞ ¼Wðq; pÞ ¼ 1
2 p>M�1

d ðqÞpþVdðqÞ; ð50Þ
and so that the rotary inverted pendulum system (34)–(35) is
stabilized at its unstable equilibrium point q¼ ð0; q2Þ by the pro-
posed IDA-PBC design. To prove that the system is asymptotically
stable, either detectability condition should be guaranteed, or,
since the closed-loop energy function of the system qualifies as a
Lyapunov function candidate, we can invoke LaSalle's invariance
principle as follows.

The derivative of (50) along the trajectories of the closed-loop
system is

_W ðq; pÞ ¼ ð∇qHdÞ> _qþð∇pHdÞ> _p ¼ �p>M�1
d GKvG

>M�1
d p

¼ �KvðG>∇pHdÞ2r0; ð51Þ
where Kv40. Thus, _W is negative semidefinite. Using LaSalle's
invariance principle [15], we define the set Ω as

Ω¼ fðq; pÞ : _W ðq; pÞ ¼ G>∇pHd ¼ G>M�1
d ðqÞp¼ 0g: ð52Þ

Using

M�1
d ¼ Δ

Δd

m3
σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
ϵþ cos ðq1Þ

2
6664

3
7775;

ð53Þ
we obtain

G>M�1
d ðqÞp¼ 0 1½ � Δ

Δd

m3
σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
σ cos ðq1Þð cos ðq1ÞþϵÞ

γ
ϵþ cos ðq1Þ

2
6664

3
7775

0
BBB@

1
CCCA

p1
p2

" #

¼ 0¼Δ cos ðq1Þþϵ
� 	

γΔd
σ cos ðq1Þp1þγp2
� 	¼ 0; ð54Þ

which implies

σ cos ðq1Þp1þγp2 ¼ 0; ð55Þ
as the term Δ cos ðq1Þþϵ

� 	
=γΔd40 due to ϵ41. From (55), there

are two cases to satisfy _Hd ¼ 0:
Case 1: cos ðq1Þ ¼ kπ=2 with k odd and p2 ¼ 0, or
Case 2: p1 ¼ p2 ¼ 0.
We will now show that Case 1 is not feasible. Note that

p2 ¼ 0⟹ _p2 ¼ 0, and from the system dynamics (1) with (36) and
(37), _p2 is the control input (45), (47). That is

_p2 ¼ �σ cos ðq1Þ
γ

γm3� ρþγ sin 2ðq1Þ
� �

ϵþ cos ðq1Þ
� 	� �

B1

2
p21þB2p1p2þ

B3

2
p22þ

ϵλ1λ
2
2 sin ðq1Þ

1�λ22 cos 2ðq1Þ
� λ1 sin ðq1Þ
ϵþ cos ðq1Þ

 !

� γm3�
σ2 cos 2ðq1Þð cos ðq1ÞþϵÞ

γ

� �
Kpq2� j2

Δ
γΔd

γm3p1
�

þσ cos ðq1Þ cos ðq1Þþϵ
� 	

p2
	�KvΔ cos ðq1Þþϵ

� 	
γΔd

σ cos ðq1Þp1
�

þγp2
	¼ 0:

Substituting cos ðq1Þ ¼ kπ=2 (with k odd) and p2 ¼ 0 yields

j2
Δ
γΔd

γm3p1 ¼ 0; ð56Þ

which implies that p1 ¼ 0⟹ _p1 ¼ 0. Now, from the system
dynamics,

_p1 ¼
1

2Δ2 ρþγ sin 2ðq1Þ
� �

p21þγp22þ2σ cos ðq1Þp1p2
h i

ðγ2þσ2Þ sin ð2q1Þ
� 	þ 1

2Δ
2σ sin ðq1Þp1p2�γ sin ð2q1Þp21
� 

þκ sin ðq1Þ ¼ 0: ð57Þ
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Fig. 7. The total energy of the rotary inverted pendulum. Left: q10
¼ 451. Right: q10

¼ 1801.
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Note that because of the last term (κ sin ðq1Þ) in (57), _p1 ¼ 0 is only
satisfied if q1akπ=2 with k odd. It is indeed satisfied if q1 ¼ 0.
Thus, Case 1 cannot happen, and only Case 2 is true. Hence, the
system can maintain the _Hd ¼ 0 condition only at the equilibrium
point ðqe;0Þ, which proves that this equilibrium is ‘almost’ globally
asymptotically stable.

Fig. 7 depicts the energy evolution for the rotary pendulum for
two initial pendulum angles, 45° and 180°. It shows that the sys-
tem converges to its stable manifold corresponding to its isolated
minimum energy. It also illustrates the fact that for the closed-
loop system, the total energy function Hd and the potential energy
function Vd satisfy the relation VdðtÞoHdðtÞoHdð0Þ, 8 t.
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
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5.4. Simulation results

We present some simulation results obtained for the model of
Quanser QUBE-Servo rotary pendulum shown in Fig. 6 with the
IDA-PBC controller (45), (47). The closed-loop performance is
evaluated with two sets of simulations. In the first set, the pen-
dulum starts at ðq10

¼ π=4Þ and the controller parameters Kp¼0.01,
Kv ¼ 1:7� 10�5, Kj ¼ 2� 10�5, m3 ¼ 50, ϵ¼1.1. This q10

is more
than twice the initial angular position of the pendulum that is
recommended for the balancing experiment of this rotary pen-
dulum hardware using a linear state feedback controller obtained
via a pole placement design [27]. The results are depicted in
design for underactuated mechanical systems with applications,
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Figs. 8 and 9. As can be observed, the pendulum can easily be
stabilized at its upright position using the proposed controller
with very little effort as shown by the low value of the control
effort.

To show the global behaviour of the closed-loop system,
simulations have been carried out with the pendulum swings up
from the hanging position ðq10

¼ πÞ, and having the parameters

Kp¼6, Kv ¼ 2:1� 10�4, Kj ¼ 1� 10�5, m3 ¼ 54, ϵ¼1.3. It is
apparent from Fig. 10 that the proposed controller yields global
asymptotic stabilization of the rotary inverted pendulum. How-
ever, it can be observed from Fig. 11 that the control effort is sig-
nificantly increased with the increased initial angular position of
the pendulum. More simulations on a different rotary inverted
pendulum hardware can be found in [28].
82

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

Time (sec)

C
on

tr
ol

 e
ffo

rt
 (V

ol
t)

Fig. 9. Control input with ½q0 ; p0� ¼ ½π4;0:8; �0:7� 10�3 ; �0:5� 10�3�.

−50

0

50

100

150

200

q
1
 (

d
e

g
re

e
)

0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3

p
1
 (

k
g

.m
2
.r

a
d

.s
−

1
)

Time (sec)

Fig. 10. Transient responses with ½q0 ; p0�

Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
European Journal of Control (2015), http://dx.doi.org/10.1016/j.ejcon.
6. Hardware experiments with the rotary inverted pendulum

6.1. Experimental setup

The experiments are also performed with the Quanser QUBE-
Servo rotary pendulum. The hardware comprises an 18 V brushed
DC motor contained in a solid aluminium frame and attached to the
arm using magnets. Two single-ended optical shaft encoders are
used to measure the angular positions of the pendulum, q1, and
arm, q2. The hardware is connected to a PC through the QUBE-
Servo USB interface. This interface has its own built-in PWM
voltage-controlled power amplifier and data acquisition device.
The output voltage range to the load is between 710 V. The
interaction between the PC and the hardware is driven by the
QUARC real-time control software integrated with Matlab/Simulink
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to actuate the DC motor and read the angular positions q1 and q2.
The sampling time of the control is 0.002 s.

6.2. Friction compensation

Note that the PCH modelling framework neglects some com-
ponents of the dynamics to comply with the underlying concept of
energy conservation in this modelling approach. For the rotary
pendulum, the PCH model used in Section 5.1 does not consider
non-conservative forces (e.g. friction) [1]. Thus, applying the con-
troller (45)–(47) alone is not enough to stabilize the pendulum in
the hardware implementation, due to the effects of friction which
are not taken into account in the controller design. Friction is
present in any mechanical systems and is a crucial aspect of many
control systems. It can be highly nonlinear and may lead to steady-
state errors, tracking errors, limit cycles and other undesirable
behaviour [23]. Friction compensation is a common approach to
deal with such effects and to achieve improved performance.

In this experiment, we have taken into account the Cou-
lombþviscous friction model, which has been widely used for
friction compensation in many control systems applications (see
[33,30]). The friction compensation term

uf ¼ bð _q2� _q1Þþkf signð _q2� _q1Þ; ð58Þ

with kf being the friction coefficient and b the viscous damping
coefficient of the link, is added to the IDA-PBC controller (45), (47)
in order to overcome/compensate friction and hence enhance the
performance of the closed-loop system. Considering the friction in
the joints and taking into account the unmodelled dynamics
introduced by the encoder cable as shown in Fig. 6, the best fric-
tion model's parameters are estimated as kf¼0.5755 and
b¼0.005755. Thus, the total control law applied to the hardware is
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
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of the form

u¼ uesþudiþuf : ð59Þ

6.3. States measurement

The two optical shaft encoders that measure the angular
positions of the pendulum and the arm have the resolution of
2048 counts per revolution in quadrature mode (512 lines per
revolution). The momenta p1 and p2 are obtained from the relation
p¼M _q, where the angular velocities _q1 and _q2 of the pendulum
and arm are obtained by differentiating their corresponding
measured angular positions. A low-pass filter has been added to
the output of each differentiator to remove some high-frequency
components (noise) which appears as a result of quantization due
to the encoder measurement. The low-pass filters have been set as
50=ðsþ50Þ, with the cutoff frequency wf¼50 rad/s or
wf ¼ 50=ð2πÞ ¼ 7:96 Hz.

6.4. Experimental results

In this section, we show that our experimental results on the
QUBE- rotary pendulum system. The total control law (59) has
been applied to stabilize the pendulum at its upward position. The
initial condition for the position of the pendulum was q10 ¼ 451.
We will discuss later in this paper the factors that limited
achieving a larger (DoA). However, this DoA still far larger than
what was obtained using the linear controllers (the maximum
achieved using a linear controller given in [27] was q10

¼ 201Þ.
In the experiment, the pendulum was set to start from a

downward position. A swing-up controller based on the strategy
developed in [5] has been applied to drive the pendulum up to the
initial angle (q10

). Once the pendulum reaches this angle, the
design for underactuated mechanical systems with applications,
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controller switches to the IDA-PBC stabilizing controller. The
controller parameters used in the experiment were m3 ¼ 67,
Kp ¼ 8:0� 10�4, Kv ¼ 6� 10�6 and ϵ¼1. Note that while in
simulation we can set the initial values of every state, this is not
the case for the experiment. The only state for which the initial
value can be set directly is the pendulum angle q10

.
Figs. 12 and 13 show the experimental results for a hybrid

controller (i.e. swing-up and stabilizing) for the inverted pendu-
lum. In order to clearly show the effect of our proposed controller,
we have magnified the parts of these figures starting from the
instant of commutation (t¼6.16 s) i.e. the instant in which the
switching to IDA-PBC stabilizing controller take place as shown in
Figs. 14 and 15.

We can observe from Fig. 14, which depicts the time histories of
the positions and velocities of the pendulum and the arm, that all
states converge to their desired equilibrium point, thus achieving
asymptotic stabilization of the closed-loop system with the
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Fig. 13. Experimental results (swing-up and stabilization): control input.
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controller (59). Furthermore, this figure shows the smooth and fast
convergence of the states while the pendulum and arm exhibit
slight oscillatory behaviour (o1:51). The profile of the control
input is shown in Fig. 15. We can observe the smooth control effort
but with a more demanding effort to balance the pendulum at its
vertical upward position.

6.5. Robustness of the proposed IDA-PBC

In order to show the robustness of the proposed controller, the
pendulum has been perturbed, by slightly pushing it, at t¼14.5 s.
The experimental results are shown in Figs. 16 and 17. As we can
observe, the states recover from the injected disturbance, con-
verging fast and smoothly to their desired values. While the tra-
jectories of the states q1, _q1 and _q2 converge to their exact desired
values, q2 which is the arm position converges to another position.
This is expected as each position of the arm is an equilibrium.
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Furthermore, Fig. 17 shows that the control effort in response for
the perturbation is smooth and remains within the acceptable
voltage range. It is evident from these graphs that the closed-loop
system is robust with respect to disturbances on the pendulum.

Although in theory, global asymptotic stabilization can be
achieved, the maximum value of the pendulum angle achieved in
experimental results was q10

¼ 451. This can be mainly attributed
to hardware limitations; (1) saturation of the control input; The
motor is relatively small and provides insufficient torque to
enlarge the initial pendulum angle, thus the domain of attraction.
As shown in Fig. 15, vmax was required already to stabilize the
system starting from q10

¼ 451. (2) The arm does not rotate a full
3601 by design: the encoder cable is attached from the pendulum
module encoder to the Encoder 1 connector on the top panel of
Please cite this article as: M. Ryalat, D.S. Laila, A simplified IDA-PBC
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the QUBE-Servo, hence a stopper is used to avoid any contact
between the pendulum and the cable as shown in Fig. 6.
7. Conclusion and future works

We have improved the IDA-PBC method for under-actuated
mechanical systems. This improvement is achieved via a particular
simplification of the matching PDEs. Solving these PDEs is the
main difficulty in application of this method. We have defined a
general construction procedure to reparametrize the inertia matrix
and used to simplify and solve potential energy PDEs, achieving
total energy shaping which is essential for stabilization of UMSs.
The result has been successfully applied to solve an almost global
stabilization control design for an inertia wheel pendulum and a
rotary inverted pendulum which belong to two groups of PCH
systems, the separable and non-separable systems, respectively.
The proposed method has significantly simplified the design
computation and also yield a simpler form of the controller for
both systems. It has been also shown by realistic simulations that
this design results in a very high closed-loop performance of these
systems in full nonlinear dynamics.

Furthermore, we have presented a successful experimental
implementation of this approach to the rotary inverted pendulum
hardware. The results have proved the effectiveness of the con-
troller and its robustness with respect to disturbances. The theo-
retical results presented in this paper (together with [28]) and the
experimental results can be used as the motivation to use this
method in other real engineering applications. Current research is
under way to extend this approach for a larger class of under-
actuated mechanical systems, as well as proposing an observer
that facilitate the IDA-PBC methodology.
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