119 research outputs found

    Analyzing Leadership Opportunities through Participant Perspective

    Get PDF
    The Anatomy Academic Assistant (AAA) practicum is a peer-mentoring program that helps participants further develop leadership skills. The goal of this research was to analyze leadership qualities through participant perspective and analyze the effectiveness of the AAA practicum in enhancing these leadership qualities. A 25-question survey, measuring participant perspective, was designed to include both rating-scale questions and free response questions. Rating-scale questions used a Likert scale with a corresponding assigned value. Free response questions also provided qualitative data that was grouped into overarching themes in a generated word cloud. The assigned value averages showed that participants largely agreed with the questions, it was simply the degree to which they agree varied on an individual basis. Participants “agreed” that the AAA practicum developed skills like decision-making, accountability and integrity, confidence, and leadership. Additionally, participants responded that the AAA practicum needed to improve communication, teamwork, and organization. In future surveys, more leadership skills should be evaluated, and better definitions of leadership skills should be provided

    Influence of a Functional Knee Brace and Exercise on Lower Extremity Kinematics During Jogging

    Get PDF
    ABSTRACT Context: Functional knee braces (FKB) are used prophylactically and in rehabilitation to aide in the functional stability of the knee joint. Objective: To determine if alterations in sagittal plane lower extremity kinematics remain evident throughout a one hour period in healthy individuals. Design: 2X5 repeated measures design. Setting: Biomechanics Laboratory. Subjects: Twenty subjects (14 male and 6 female, mean age 26.5±7 yrs; height 172.4±13 cm; weight 78.6±9 kg), separated into braced (B) and no brace (NB) groups. Intervention: A one-hour exercise program divided into three 20 minute increments. Main Outcome Measures: Synchronized three-dimensional kinematic data were collected at 20-minute increments to assess the effect of the FKB on select lower extremity joint kinematics. Results: Hip, knee and ankle joint position were not significantly affected by time (exercise). However significant decreases in hip (p = .05) and knee flexion (p \u3c .05) were noted in the B group compared to the NB group regardless of time while ankle joint position was unaffected. Conclusions: Hip and knee flexion angles were reduced in the B group compared to the NB group, while ankle joint position was not affected. Wearing a knee brace appears to not only influence knee joint position but also hip joint position. It is possible that repetitive changes to hip joint kinematics may be detrimental to hip and low back function and thus lead to injury

    Effects of training on postural control and agility when wearing socks of different compression levels

    Get PDF
    Study aim: The aim of this study was to evaluate the effects of training while wearing socks differing in compression level (clinical, sub-clinical, regular) on performance of static and dynamic balancing and agility tasks in healthy, physically active people. We sought to understand whether socks with different compression properties supported postural regulation and agility task performance by enhancing somatosensory perception, unskewed by specific age range effects. Material and methods: Participants comprised 61 adults aged 18-75 years, divided into three groups (two experimental groups wearing clinical or sub-clinical level compression socks, and one control group wearing regular non-compression socks during training). An 8-week (2 Ă— 1h per week) intervention programme was administered to train static and dynamic balance and postural control, leg strength and agility. Results: A mixed model ANOVA revealed no differences in static and dynamic balance and postural control and agility performance between clinical, sub-clinical, and control groups before and after training. All groups significantly improved their test performance, suggesting that training had some benefit on motor performance. Conclusions: These results raised interesting questions requiring further investigation to examine the effects of wearing socks (with and without different levels of compression) on motor behaviours in specific groups of elderly vs. young participants, in physically active vs. less physically active people, and in performance settings outside standardized laboratory tests to study applications in natural performance environments

    Lower extremity fatigue increases complexity of postural control during a single-legged stance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-linear approaches to assessment of postural control can provide insight that compliment linear approaches. Control entropy (CE) is a recently developed statistical tool from non-linear dynamical systems used to assess the complexity of non-stationary signals. We have previously used CE of high resolution accelerometry in running to show decreased complexity with exhaustive exercise. The purpose of this study was to determine if complexity of postural control decreases following fatiguing exercise using CE.</p> <p>Methods</p> <p>Ten subjects (5 M/5 F; 25 ± 3 yr; 169.4 ± 11.7 cm; 79.0 ± 16.9 kg) consented to participation approved by Western Oregon University IRB and completed two trials separated by 2-7 days. Trials consisted of two single-legged balance tests separated by two Wingate anaerobic tests (WAnT; PreFat/PostFat), or rest period (PreRest/PostRest). Balance tests consisted of a series of five single-legged stances, separated by 30 s rest, performed while standing on the dominant leg for 15-s with the participant crossing the arms over the chest and flexing the non-dominant knee to 90 degrees. High resolution accelerometers (HRA) were fixed superficial to L3/L4 at the approximate center of mass (COM). Triaxial signals from the HRA were streamed in real time at 625 Hz. COM accelerations were recorded in g's for vertical (VT), medial/lateral (ML), and anterior/posterior (AP) axes. A newly developed statistic (R-test) was applied to group response shapes generated by Karhunen Loeve (KL) transform modes resulting from Control Entropy (CE) analysis.</p> <p>Results</p> <p>R-tests showed a significant mean vector difference (<it>p </it>< .05) within conditions, between axes in all cases, except PostFat, indicating the shape of the complexity response was different in these cases. R-test between conditions, within axis, differences were only present in PostFat for AP vs. PreFat (<it>p </it>< .05). T-tests showed a significantly higher overall CE PostFat in VT and ML compared to PreFat and PostRest (<it>p </it>< .0001). PostFat CE was also higher than PostRest in AP (<it>p </it>< .0001).</p> <p>Conclusions</p> <p>These data indicate that fatiguing exercise eliminates the differential complexity response between axes, but increases complexity in all axes compared to the non-fatigued condition. This has implications with regard to the effects of fatigue on strategies of the control system to maintain postural control.</p

    Balance in single-limb stance in healthy subjects – reliability of testing procedure and the effect of short-duration sub-maximal cycling

    Get PDF
    BACKGROUND: To assess balance in single-limb stance, center of pressure movements can be registered by stabilometry with force platforms. This can be used for evaluation of injuries to the lower extremities. It is important to ensure that the assessment tools we use in the clinical setting and in research have minimal measurement error. Previous studies have shown that the ability to maintain standing balance is decreased by fatiguing exercise. There is, however, a need for further studies regarding possible effects of general exercise on balance in single-limb stance. The aims of this study were: 1) to assess the test-retest reliability of balance variables measured in single-limb stance on a force platform, and 2) to study the effect of exercise on balance in single-limb stance, in healthy subjects. METHODS: Forty-two individuals were examined for test-retest reliability, and 24 individuals were tested before (pre-exercise) and after (post-exercise) short-duration, sub-maximal cycling. Amplitude and average speed of center of pressure movements were registered in the frontal and sagittal planes. Mean difference between test and retest with 95% confidence interval, the intraclass correlation coefficient, and the Bland and Altman graphs with limits of agreement, were used as statistical methods for assessing test-retest reliability. The paired t-test was used for comparisons between pre- and post-exercise measurements. RESULTS: No difference was found between test and retest. The intraclass correlation coefficients ranged from 0.79 to 0.95 in all stabilometric variables except one. The limits of agreement revealed that small changes in an individual's performance cannot be detected. Higher values were found after cycling in three of the eight stabilometric variables. CONCLUSIONS: The absence of systematic variation and the high ICC values, indicate that the test is reliable for distinguishing among groups of subjects. However, relatively large differences in an individual's balance performance would be required to confidently state that a change is real. The higher values found after cycling, indicate compensatory mechanisms intended to maintain balance, or a decreased ability to maintain balance. It is recommended that average speed and DEV 10; the variables showing the best reliability and effects of exercise, be used in future studies
    • …
    corecore