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ABSTRACT  

Balance training programs have been shown to reduce ankle sprain injuries in 

sports, but little is known about the transfer from this training modality to motor 

coordination and ankle joint biomechanics in sport specific movements. This study 

aimed to investigate the effects of wobble board training on motor coordination and 

ankle mechanics during early single-leg landing from a lateral jump. Twenty-two 

healthy men were randomly assigned to either a control or a training group, who 

engaged in four weeks of wobble board training. Full-body kinematics, ground 

reaction force and surface electromyography (EMG) from 12 lower limb muscles 

were recorded during landing. Ankle joint work in the sagittal, frontal and transverse 

plane were calculated from 0-100 ms after landing. Non-negative matrix factorization 

(NMF) was applied on the concatenated EMG Pre- and Post-intervention. Wobble 

board training increased the ankle joint eccentric work 1.2 times in the frontal 

(p<0.01) and 4.4 times in the transverse plane (p<0.01) for trained participants. 

Wobble board training modified the modular organization of muscle recruitment in 

the early landing phase by separating the activation of plantar flexors and medio-

lateral ankle stabilizers. Furthermore, the activation of secondary muscles across 

motor modules was reduced after training, refocusing the activation on the main 

muscles involved on the mechanical main sub-functions for each module. These 

results suggest that wobble board training may modify motor coordination when 

landing from a lateral jump, focusing on the recruitment of specific muscles/muscle 

groups that optimize ankle joint stability during early ground contact in single-leg 

landing. 

 

Key words: balance training; injury prevention; motor modules; muscle synergies; 

ankle; stability   
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INTRODUCTION 

Landing on one leg is common in team sports1, and an adequate landing technique 

is crucial to optimize load distribution and cope with potentially destabilizing force 

components.2,3 In game situations, landing becomes more challenging by the 

interaction of mechanical and cognitive demands as they occur4, possibly increasing 

the risk of injuries. In fact, jump-landing sequences in basketball and volleyball have 

been linked to 45–86% of acute ankle and knee sprains5, which can be related to the 

high postural demands and cognitive-motor interactions that challenge postural 

control when landing from a jump.5 It has been demonstrated that the direction of the 

jump significantly affects lower limb net joint moments, as these are up to 10 times 

higher during lateral drop jumps compared to other directions.6  

 

The above mentioned greater demands that lateral and diagonal jumps induce to 

dynamic postural stability during landing can further challenge the motor control of 

multi-joint coordination to dissipate energy7. Inter-muscular coordination is a term 

used in sports sciences and sports medicine to describe neuromuscular mechanisms 

for movement control. Inter-muscular coordination has been investigated using 

different processing methods based on surface electromyographic (EMG) 

parameters from individual muscles or selected muscle groups.8,9 This selection of 

specific muscles compromises the comparability of results across studies and may 

impede the identification of a potentially superordinate strategy. Therefore, it is 

important to establish robust methods for investigating muscle coordination in 

complex movements. The use of non-negative matrix factorization (NMF) allows for 

the extraction of inter-muscular relationships from EMG data over time. NMF has 

been used to describe neural control of movement and inter-muscular coordination in 
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sports10 and postural control.11,12 Therefore, factorization analysis may be a suitable 

methodology to describe motor coordination during lateral landing by identifying the 

same mechanical goals and sub-functions of a group of muscles during different 

tasks.13 

 

Previous studies have shown the effectiveness of balance training in reducing lower 

limb injury occurrence. It is believed that motor coordination is a key factor for injury 

prevention, as the gains in inter-muscular coordination for landing may potentially 

reduce the likelihood of lower limb injuries. Wobble boards are simple and low-cost 

devices widely used to investigate 14,15 and improve balance and postural control.16,17 

Previous studies have shown that such devices can provide fast improvement in 

balance performance with a long-term retention, 18,19 ultimately reducing the risk of 

ankle sprains by up to 50%.20 Moreover, athletes presenting poor neuromuscular 

landing technique have been found to be less efficient to dissipate energy9 and more 

prone to knee and ankle injuries.21 These observations taken together suggest that 

the adaptations acquired from specific balance exercises seem to be transferred to 

motor control of movements with high injury risk, such as those involving single-leg 

landing.  

 

There is a lack of studies demonstrating the neuromechanical changes induced by 

balance training during sports movements. Additionally, the few existing studies that 

report neuromuscular adaptations from balance training transferred to landing have 

reported localized benefits predominantly at the knee joint.22 Therefore, the aim of 

the present study was to investigate whether the gains in balance skills induced by 

wobble board training would be transferred to lateral landing by means of 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

improvements in lower limb inter-muscular coordination and ankle mechanics. It was 

hypothesized that balance training would alter the modular organization of muscle 

recruitment during early ground contact of lateral landing. This change in inter-

muscular coordination would influence the ankle mechanics and increase the joint 

work related to medio-lateral stability of the ankle. 

 

METHODS 

Participants 

Twenty-four healthy young men (18-25 years old) volunteered for the study. Initially, 

participants filled in the Cumberland Ankle Instability Tool (CAIT) questionnaire23, 

which is largely used to identify functional ankle instability. Exclusion criteria included 

a CAIT-Score under 27.5, history of lower-extremity injury, recent (within the last 6 

months) low back injury, and/or vestibular dysfunction, as well as previous 

experience and/or systematic training using a wobble board. Leg dominance was 

determined through three functional tests: ball kick test, step-up test and balance 

recovery test.24 The participants in this study were recreational practitioners of 

different team sports (soccer, basketball, handball, volleyball). Participants reported 

to partake in physical activities about 3-5 times per week. All participants provided 

written informed consent before participation and the procedures were approved by 

the ethical committee of Northern Jutland (N-20120044). 
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Experimental design 

All participants took part in a familiarization session that included: 1) filling out the 

CAIT- Questionnaire; 2) determination of leg dominance; 3) explanation of the 

experimental procedures; 4) practice of lateral jumps and 5) determination of the 

maximal lateral jumping height, which was defined as the target jump height for the 

subsequent data collection sessions. The maximal jump height was defined as the 

maximal height participants could reach while being able to land and stop without 

taking extra steps on the force platform. A second session (experimental session) 

took place on a following day up to 72 hours after the familiarization session for the 

recordings of EMG and kinematic data from lateral jumps. Experimental sessions 

were conducted before (Pre) and after (Post) training. Training group (TG) 

participants also took part in 12 intervention sessions (T1-T12, 30 min duration, 3 

sessions/week – see section Training intervention) over four weeks. Participants 

allocated to the control group (CG) were asked to maintain their normal activity 

during the four weeks between sessions. 

 

Lateral jump task 

Initially, the target bar (Figure 1A) was positioned according to the maximal height 

reached in the familiarization session. In this study, the landing phase of the jump 

was analysed, therefore the target bar was fixed at the same height before and after 

the training to minimize potential technique changes related to jump performance. 

Participants then performed 5 to 10 warm-up/familiarization trials, followed by 10 

recording trials. The lateral jump initial position was individually adjusted to allow for 

one lateral step before the jump, which consisted of a sidestep with a push off 
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sideways with the participants aiming at touching the target bar with both hands and 

land with their dominant foot on the force plate and stop (Figure 2A). A jump trial was 

discarded if the subject required any stepping corrections following landing as 

described above. All participants were barefoot during testing, and none reported 

any discomfort that would limit the execution of the functional tasks. 

 

 INSERT FIGURE 1 HERE  

 

Training intervention 

Training sessions consisted of 15 balance exercises using a WB performed 

intermittently with 60 s of exercise and 60 s rest in between. Single-leg standing on 

the WB with hands akimbo was the initial position for all the exercises. Progression 

of the level of difficulty was provided once the participants accomplished the task 

without failing to stand on one leg for 20 consecutive seconds. 

 

Levels of difficulty performed were as follows: 1. standing still looking straight ahead; 

2. rocking the board in the sagittal plane; 3. rocking the board in the frontal plane; 4. 

rocking the board alternately in the frontal and sagittal planes; 5. tilting the head 

sideways repeatedly; 6. tilting the head anteriorly and posteriorly; 7. performing 

selected arm movements; 8. performing contra-lateral leg movements; 9. combining 

leg and arm movements; 10. performing single-leg squats; 11. bouncing a ball on the 

floor; 12. throwing a ball against a target on the wall and catch; 13. performing volley 

taps of an air balloon; 14. keeping eyes closed; 15. performing tasks 1 to 14 using a 

hemi-sphere with a smaller diameter mounted to the board.   
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Data collection 

Kinetics 

A three-dimensional force platform (AMTI, OR6-5, Watertown, MA) provided ground 

reaction forces (GRF) and moments sampled at 1000 Hz, simultaneously with 

marker data by a motion capture system (8-cameras, Oqus 300, Qualisys, 

Gothenburg, Sweden) at 250 Hz. The GRF data were filtered with a fourth-order 100 

Hz low-pass zero-lag Butterworth filter. The peak GRF was computed for both the 

vertical and lateral force components. 

 

Kinematics  

Retro-reflective, markers were attached bilaterally to the skin overlying the following 

anatomical landmarks: heel, first and fifth metatarso-phalangeal joint, lateral 

malleolus, lateral knee condyle, greater trochanter, anterior and posterior superior 

iliac spines and acromio-clavicular joints. Markers were placed also on manubrium, 

xiphoid process, spinal process tip of the seventh cervical vertebrae. Additional 

markers were placed on the segments (foot, shank, thigh), serving as tracking 

markers to define the three-dimensional (3D) motion for the dominant limb 

segments.25  

 

Marker trajectories from the motion analysis collection were low pass filtered at 10 

Hz with a recursive fourth order Butterworth digital filter. Three-dimensional data 

from trunk, pelvis and lower limbs were used to calculate center of gravity, using rigid 

body analysis (Visual3D, Version 5, C-Motion, Inc., Rockville, MD). Jump height was 

calculated as the difference between pelvis height while standing and the maximum 

vertical position during the flight phase of the jump-landing task.  
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EMG 

For recording EMG signals, bipolar derivations with pairs of Ag/AgCl electrodes 

(AmbuNeuroline 720 01-K/12; Ambu, Ballerup, Denmark) with 22 mm of center-to-

center spacing were used. Prior to electrode placement, the skin was shaved and 

lightly abraded. The EMG signals were recorded from the following muscles of the 

landing leg – dominant side - according to Barbero et al.26: tibialis anterior (TA), 

peroneus longus (PL), soleus (SO), gastrocnemius lateralis (GL), gastrocnemius 

medialis (GM), vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), 

biceps femoris (BF), semitendinosus (ST), gluteus maximus (GMax) and gluteus 

medius (GMed). A reference electrode was placed over the left tibial bone. The EMG 

cables were held tightly close to the lower limb segments by stretching running 

pants, in order to minimize movement artefacts during jumping and landing. The 

EMG signals were sampled at 2000 Hz (12 bits per sample - Biovision, Wehrheim, 

Germany), band-pass filtered (second-order, zero lag Butterworth, bandwidth 10–

500 Hz) and recorded on the computer’s storage medium for off-line analysis. 

 

Data analysis 

Ankle Joint Mechanics 

The position and orientation of the right ankle joint was calculated using an inverse 

kinematic lower limb model created in Visual 3D (C-motion, Germantown, MD). The 

ankle joint was constrained to have three rotational degrees of freedom (DOF), the x-

axis represented dorsiflexion/plantarflexion, the y-axis represented 

inversion/eversion and the z-axis represented abduction/adduction of the foot in 

relation to the lower leg. Neutral ankle joint position were 0 degree in the frontal, 

transversal and sagittal planes. Positive values correspond to dorsiflexion, eversion 
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and abduction. Instantaneous ankle joint power trajectories were computed for the 

landing period. Joint power was normalized to body mass. Instantaneous ankle joint 

power trajectories were computed from within 100 ms post initial contact. Ankle joint 

work was obtained by quantifying the integral of the joint power-time curve. By 

convention, the magnitude of joint work is proportional to the active muscle work 

around the joint, while positive and negative power values would indicate energy 

generation and absorption.3  

 

Surface EMG segmentation  

The jump cycle was defined from 200 ms prior to initial contact (defined from the 

vertical GRF) to 200 ms after the minimal pelvis position following initial foot contact. 

After segmentation, the surface EMG signals from the 12 muscles were low-pass 

filtered (20 Hz), full-wave rectified and time-normalized in order to obtain 200 data 

points for each landing.27,28 For each subject, the individual EMG amplitudes were 

normalized for each trial to the respective peak EMG, therefore varying from 0 to 1 

(Figure 1B illustrates the single trial EMG signals). In both Pre- and Post-training 

datasets, the EMG trials were averaged for each subject, so that they represented 

each subject by one averaged lateral jump EMG matrix. Subsequently, we 

concatenated the EMG data from all participants of the TG and CG into pre-training 

and post-training datasets. In this manner, inter-subject variability was accounted for 

in the analysis.29 

 

Non-negative matrix factorization 

NMF was applied in each of the concatenated datasets to identify muscle weightings 

(motor modules) and activation signals. There is a detailed description elsewhere of 
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the motor modules model used, calculation of dimensionality and motor modules 

similarities.27,28 Briefly, after extracting the motor modules, the estimated muscular 

activation pattern was compared with the recorded pattern by means of the variance 

accounted for (VAF) value, defined as the variation that can be explained by the 

model: VAF = 1 – SSE/SST, where SSE (sum of squared errors) is the unexplained 

variation and SST (total sum of squares) is the pooled variation of the data. The 

reconstruction quality was analysed by plotting the VAF as a function of the number 

of modules, and the minimum number of modules was identified as the point in 

which this curve pronouncedly changed its slope.30 A second criterion was that 

reconstruction quality should achieve at least 80% for the concatenation of multiple 

participants.27,31 

 

Motor modules similarities 

In order to quantitatively compare the muscle weightings results from Pre- to Post-

training, as well as the activation signals across all participants, an index of similarity 

was computed. Similarities between muscle weightings or activation signals were 

calculated computing scalar products between pairs of columns, normalized by the 

product of the norms of each column.28,30 A pair of muscle weightings or activation 

signals was considered similar if the scalar products were ≥ 0.8.28,31 

 

Residual muscle weighting  

The use of NMF for exploring neural control of movement implies that a group of 

muscles are predominantly active in a motor module. Therefore, these same 

muscles should present minimal activation in other motor modules. In this study, we 

introduced the calculation of residual muscle activation (RMW). For each muscle, the 
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motor module presenting the highest muscle weighting was set to 100% and all other 

weightings of other motor modules were converted to a fraction of the maximum. The 

RMW for a given muscle as defined as the sum of the normalized muscle weightings 

across all motor modules, except from the module presenting the highest weighting. 

The RMW was calculated for each muscle Pre- and Post-training for both CT and 

TG. 

 

Statistical analysis 

The Statistical Package for the Social Sciences (IBM SPSS Inc. Version 22.0, 

Chicago, IL, USA) was used for statistical analysis. To evaluate the effects of training 

on the motor modules and activation signals, similarities between pre- and post-

training conditions were computed for the TG and CG separately. Repeated 

measures 2-way analysis of variance (ANOVA), considering two groups (TG vs CG - 

between subject factor) and two time levels (Pre vs Post - repeated measures factor) 

was used to verify significant group-by-time interactions as well as simple main time 

effects of the jump height, peak of ground reaction forces, RFD, ankle joint work, 

motor modules VAF, inter-participants similarity, and muscle weightings RMW. 

Bonferroni pairwise post-hoc tests were used in case of significant group-by-time 

interactions. Partial eta-squared (ŋp2) was used to calculate the treatment effect 

sizes. The significance level was set at p<0.05. All dependent variables 

demonstrated a normal distribution and the average statistical power ranged from 

0.52-0.92. The significance level was set at p<0.05. Data are displayed as 

mean±standard deviation (SD).  
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RESULTS 

Two participants reporting a low CAIT-Score were excluded, while two participants 

chose to withdraw from the study. Therefore, nine participants assigned to a control 

group (CG, CAIT-Score 28.2±0.9; age 26±3 years old; BMI=22.9±1.4) and 11 

participants assigned to the training group (TG, n=11: CAIT-Score 28.8±1.2; age: 

25±2 years old; BMI=21.9±2.0) completed the experiment. 

 

Lateral jump and landing performance 

No significant group-by-time interactions were observed for lateral jump height, 

vertical or lateral peak ground reaction force (p=0.365, ŋp2 = 0.048; p=0.43, 

ŋp2=0.03; p=0.13, ŋp2=0.12, respectively; Table 1). Likewise, no significant group-

by-time interactions were observed for lateral jump height, vertical or lateral RFD 

(p=0.365, ŋp2 = 0.048; p=0.843, ŋp2 = 0.002; p=0.630, ŋp2 = 0.013, respectively; 

Table 1).  

 

 INSERT TABLE 1 HERE  

Ankle joint mechanics  

A significant group-by-time interaction was observed for the ankle plantar flexion 

angle at initial contact (DF: p=0.04, ŋp2=0.22, ADD: p=0.680, ŋp2= 0.01; INV: p= 

0.664, ŋp2=0.01; Figure 2 A, C and F). Bonferroni post-hoc tests revealed no 

significant difference Pre- and Post-training (CG: p=0.130, ŋp2=0.21; TG: p=114, 

ŋp2=23). Participants from the control and training group landed with about 42.5 

degrees of plantar flexion four weeks after the initial experimental session. 

Considering that no main time or group effects were observed (p=0.61, ŋp2= 0.01; 

p=0.32, ŋp2= 0.05, respectively), this represents a non-significant increase in plantar 
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flexion for the control and a non-significant decrease in plantar flexion for trained 

participants.  

 

A significant group-by-time interaction was observed for inversion and adduction 

ankle joint work (dorsiflexion: p=0.279, ŋp2=0.06, adduction: p=0.007, ŋp2= 0.33; 

inversion: p= 0.007, ŋp2=0.34; Figure 2, B, D and E). Bonferroni post-hoc tests 

revealed that the TG increased both ankle eversion and abduction work (adduction: 

p=0.04, ŋp2= 0.37; inversion: p=0.03, ŋp2=0.39) after training. No changes in ankle 

work was found for the CG (adduction: p=0.09; ŋp2= 0.32; inversion: p=0.104, ŋp2= 

0.30). 

 

 INSERT FIGURE 2 HERE 

Motor modules - Dimensionality 

Six to seven motor modules (M) were sufficient to reconstruct multi-muscle EMG for 

both CG and TG. The reconstruction quality using less than six modules was below 

78%, whereas this quality using six motor modules was 88±0.02% (5.0±0.8% 

contribution to the VAF). The addition of a seventh motor module only raised the 

reconstruction quality to 90±0.007%, which was a contribution of only 3.3±0.3% to 

the VAF. Therefore, further analyses were based on six motor modules from all 

participants. No significant group-by-time interactions nor main effects were found for 

the VAF from the CG (VAF Pre = 91±0.01%; VAF Pre = 90±0.01%) and TG (VAF 

Pre = 92±0.02%; VAF Pre = 90±0.01%).  
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Motor modules describing inter- muscular coordination during landing  

The module with predominant gluteal muscle function (M4) was active about 50 ms 

prior to landing, likely acting to align the lower limb and preparing the hip joint for 

initial contact. Immediately after landing, the first peak of activation signals 

corresponded to the muscles that stabilize the ankle joint in the frontal and sagittal 

planes (M1). The M2 presented generalized co-activation of several muscles with 

inconsistent patterns across groups pre- and post-training, likely to stabilize joints 

after initial contact. Approximately halfway through the absorption period, knee (M3) 

and hip extensors (M4) were predominantly active likely responsible to generate joint 

torques and dissipate energy. The other two modules (M5 and M6) were active 

throughout the whole landing phase, indicating that they were functioning to stabilize 

the joints rather than dissipating energy.  

 

 INSERT FIGURE 3 HERE  

Similarities 

The similarities between muscle weightings extracted pre- and post-training were 

>0.8 for all modules, except for M2 and M6 of the CG and M1 and M2 of the TG 

(Figure 4A). Regarding the activation signals, the similarity between pre- and post-

training was >0.85 for all modules in both groups. Moreover, the similarities between 

the activation signals were significantly higher in comparison to the similarities 

between muscle weightings (p<0.05, ŋp2 = 0.17). 

 

Residual muscle weighting 

There was significant group-by-time interaction (p<0.05, ŋp2 = 0.17) for RMW, 

Bonferroni post-hoc tests revealed that RMW was significantly smaller (~30%) for TG 
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Post-training in comparison to TG pre-training (p<0.01) while CG Pre- and Post-

training did not differ (p=0.923). In Figure 3, the muscle weightings from the TG are 

shown on the right side, where a reduction in the size of the weighting for individual 

muscles across modules becomes evident, as each muscle reaches a higher relative 

amplitude concentrated in the module where it is predominantly active. 

 

 INSERT FIGURE 4 HERE  

DISCUSSION 

The main findings of this study were that wobble board training increased early 

landing eversion and abduction joint work. Concomitantly, the training modified the 

modular organization of muscle recruitment during early contact, separating one 

module with main activation of gastrocnemius muscles and another for the main 

activation of tibialis anterior and peroneus longus. The wobble board training 

reduced the activation of secondary muscles across motor modules, concentrating 

the activation on the main muscles involved in the mechanical sub-functions for each 

module. Taken together, these results suggest that wobble board training may 

modify motor coordination for landing from a lateral jump, focusing on the 

recruitment of specific muscles/muscle groups that optimize ankle joint stability 

during the early contact of single-leg landing. 

 

Ankle sprain injuries are rarely recorded in laboratory settings, but studies reporting 

such cases revealed changes in ankle mechanics as early as 60 ms after initial 

contact.32 Therefore, the initial 100 ms after landing may be decisive to determine 

safety and stability of the ankle joint. Our study revealed that at initial contact all 

participants presented a plantar flexed, inverted foot (Figure 2 A, C and E), moving 
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towards dorsiflexion, abduction and eversion within the first 100 ms of contact. The 

increased ankle abduction and eversion joint work during this short time range after 

training may suggest specific adaptations to improve medio-lateral ankle stability 

when high vertical and lateral loads are applied. It has been speculated that the 

coordination in joint power and work may reflect muscle coordination patterns used 

to cope with the load at the initial contact.33 It is noteworthy that there were no 

reductions in vertical and lateral forces or rates of force development, suggesting 

that the loads experienced during landing were similar before and after training. The 

lateral jump-landing task used in this study provided an additional challenge to 

medio-lateral postural stability during single-leg landing. Avoiding extra steps in such 

conditions demands effective strategies to accommodate joint loads, dissipate 

energy and maintain joint stability.34,35 Therefore, WB training seems to optimize 

neuromuscular strategies to accommodate loads of the ankle joint. 

 

The present study investigated motor coordination during lateral landing using NMF, 

which has also been recently used to describe the strategies for muscle recruitment 

in sports movements.10,29,36 In the current study, NMF was used to quantify inter-

muscular coordination during landing while reducing the dimensionality of the EMG 

data. Six modules were required to adequately describe the muscle activation 

involved in lateral landing. Other studies on human movement have described a 

smaller number of modules to represent muscle activation: Two modules for bench 

press37; three modules for breast stroke swimmers38; four modules for cycling and 

running10,39 and five modules for 90º cutting maneuvers.10 The elevated number of 

modules observed for landing may be related to the complex multi-joint coordination 

involved in load absorption and stabilizing body position in a short period of time. 
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Moreover, consistent dimensionality before and after training (i.e., number of motor 

modules) may emphasize that the neuromechanical requirements to perform landing 

remained similar following balance training. It is likely that the lack of specificity 

between training static balance on unstable surfaces and testing landing on one-leg 

from a lateral landing did not allow for substantial neuromuscular adaptations of 

landing performance. 

 

Wobble board training changed the modular organization for the landing task, as 

evidenced in the lower similarity for M1 and M2. Muscles acting at the ankle joint 

(TA, PL, LG and MG) were contained predominantly in M1 prior to WB training. 

Following WB training, M1 consisted of muscles acting in the frontal plane (TA, PL), 

whereas M2 consisted of muscles acting in the sagittal plane (LG, MG). In other 

words, after training,gastrocnemius muscles were proportionally less active in the 

module with higher tibialis anterior and peroneus longus activation while the tibialis 

anterior and peroneus longus were proportionally less active in the module with main 

gastrocnemius activation. Similarly, peroneus longus, tibialis anterior and 

gastrocnemius muscles’ secondary activations were lower after training in the 

module with predominant soleus activation. This selective activation of muscles 

controlling movement along specific degrees of freedom may have contributed to 

changes in the ankle joint work.  

 

Computing residual muscle weightings may objectively describe whether one or 

multiple biomechanical sub-functions can be performed with reduced influence of 

non-related muscles, subsequently optimizing the motor pattern following training. 

Asaka et al.40 trained individuals to stabilize their center of pressure location while 
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standing on an unstable surface. Stronger muscle modes (termed modules in the 

present study) presented lower activation of less relevant muscles after practicing 

the task, with a concomitant reduction in the occurrence of co-contraction muscle 

modes. Our results corroborate these findings, suggesting that balance training 

induced re-organization of the spatio-temporal properties of existing modules37,38,40 

rather than changes in dimensionalty.  

 

Previous studies have proposed several adaptation mechanisms to explain changes 

in motor performance and muscle activity following balance training. These 

adaptation mechanisms may vary from proprioceptive and sensorial adaptations to 

supraspinal adaptations18,41. Studies exploring the transfer of adaptations from 

balance training have shown reduced time to perform the shuttle-run test after four-

weeks of BOSU balance training42, faster reaction time to recruit muscles during 

forward perturbations to standing after six-weeks of wobble board balance training17, 

as well as reduced loading of the knee joint while performing side-step cutting 

maneuvers after twelve-weeks of balance training using wobble boards, tilt boards, 

mini trampolines, dura discs, and Swiss balls.43 Moreover, recently Oliveira et al.29 

have found a longer duration of muscle recruitment for the motor module related to 

the initial contact phase of side-cutting maneuvers during perturbations to balance 

after six-weeks of wobble board balance training. These findings suggest that 

adaptations from balance training may be transferred to sports movements, but the 

mechanisms underlying such improvements remain speculative. Our results suggest 

that changes in inter-muscular coordination and selective muscle recruitment may be 

a key factor for the adaptations to balance training. Moreover, these adaptations can 

influence joint mechanics and contribute to safer performance of challenging landing 
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tasks. Future studies applying the presented methods to investigate different sports 

movements may contribute to increase our understanding of the mechanisms 

underlying the benefits of balance training.  

 

This study proposed a novel protocol aiming to increase the postural control 

demands for landing from a lateral jump, which has been previously associated with 

greater joint moments.6Additionally, the target bar served to diverge participants’ 

attention from the actual landing technique, focusing on reaching the bar as well as 

assuring consistent jump height before and after training. However, our protocol did 

not aim to mimic any specific game situation. Therefore, any suggestion that this 

type of training can lead to beneficial neuromechanical adaptations in game 

situations remains speculative. More studies are necessary to advance the 

understanding of the benefits of balance training on specific sports movements and 

for reducing injury incidences.  

 

In summary, our results suggest that wobble board training can increase eversion 

and abduction ankle joint work. These mechanical changes may be directly related 

to modified modular organization of muscle recruitment in the early landing phase, in 

which there is specific spatio-temporal recruitment for plantar flexors and ankle 

evertors following training. Moreover, reductions in the modular activation of muscles 

not directly involved in mechanical sub-functions may illustrate an optimization in 

motor coordination following wobble board training.  
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PERSPECTIVES 

This is the first study implementing non-negative factorization analysis to describe 

effects of balance training inter-muscular coordination in during lateral landing. This 

method shed some light on one of the potential mechanisms underlying the success 

of balance training in preventing lower limb injuries. Initially, by demonstrating the 

transferability of adaptations from training balance performed only using WBs to a 

landing task. Moreover, landing is a very typical task during training and 

competitions, and the implementation of methods to better understand motor 

coordination during this type of movement may assist in the detection of poor 

coordination. Single leg landing from a lateral jump induces greater mechanical 

loading for lateral braking, which will demand different neuromuscular control 

strategies compared to anterior-posterior landing. This suggests that such a task is 

more appropriate to indicate the existence of performance impairments 34,44 and to 

screen biomechanical and neuromuscular adaptations to balance training, especially 

when testing healthy participants. Future studies applying the presented methods to 

high-level athletes and injured athletes during and/or following rehabilitation 

protocols may contribute to further increase our understanding of the mechanisms 

underlying the benefits of balance training. 
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FIGURE LEGENDS 

FIGURE 1. (A) Experimental set-up presenting the placement of EMG sensors (grey 
filled circles) connected with wires to the backpack with EMG amplifiers and the 
kinematic optical markers (black filled circles). (B) Protocol for lateral jump-landing 
performance, (C) Illustration of vertical ground reaction force (vGRF – solid line; gray 
circle indicating initial contact) and vertical displacement of the pelvis (vPelvic 
displacement – segmented line, black circles indicating maximum and minimum 
pelvic height), as well as the ankle angle displacement from a representative 
participant across 10 landings. (D) Representative EMG from one participant across 
10 landings. DF = dorsiflexion; PF = plantarflexion; ABD = abduction; ADD = 
adduction; EVE = eversion; INV = inversion. 
 
FIGURE 2. Mean (SD) ankle angle at initial contact (left) and ankle joint work (right) 
for dorsi/plantarflexion (DF/PF - A and B), abduction/adduction (ABD/ADD - C and 
D), eversion/inversion (EVE/INV - E and F) work for control (CG, dotted line) and 
training groups (TG, solid line) before (Pre) and after (Post) training. # indicates 
significant group-by-time interactions; * indicate significant difference Pre X Post 
training within group. 
 
FIGURE 3. Motor modules (weighting coefficients) and activation signals from the 
concatenated EMG of the control group (left) and training group (right). We 
compared muscle weightings extracted from concatenated EMG across all 
participants Pre- (black bars) and Post-training (red bars) by computing similarities 
(‘s’ value on top of each couple of muscle weightings). In each panel, we plotted the 
mean activation signals (thick lines) and ± one standard deviation (shaded areas) 
respective to each motor module in the conditions Pre- (black lines) and Post-
training (red lines) throughout the entire landing cycle. The first vertical grey line in 
the activation signal plots represents the instant of initial foot contact to the platform 
for landing, and the second grey line represents the instant of minimum pelvic height 
position after initial contact. 
 
Figure 4. Mean (SD) similarity (panel A) of motor modules (MM) and activation 
signals (AS) between Pre- and Post-training conditions for the control group (CG, 
grey bars) and the training group (TG, black bars). The residual muscle weighting (B) 
are shown before (Pre) and after balance training (Post). † denotes significant group-
by-time interactions. *denotes significant difference in relation to the MM similarity 
within group.  
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TABLE 1. Mean ±SD lateral jump height, vertical and lateral peak ground reaction forces (GRF), and 
rate of force development (RFD) of the control (CG) and training group (TG) before (Pre) and after 
(Post) training.  
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Control Group Training Group 
Jump Height  Pre 32.5±5.0 35.3±5.0 

(cm) Post 30.9±5.0 35.±5.4 

Vertical GRF Pre 3.6±0.4 3.8±0.6 
(N.kg-1) Post 3.7±0.6 3.8±0.7 

Vertical RFD  Pre 148.2±36.7 150.9±40.4 
(N.kg-1.s-1) Post 168.8±63.0 160.3±52.3 

Lateral GRF Pre 0.6±0.1 0.7±0.1 
(N.kg-1) Post 0.6±0.2 0.6±0.1 

Lateral RFD  Pre 21.7±4.4 22.7±6.3 
(N.kg-1.s-1) Post 23.9±5.2 22.8±8.0 
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