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ABSTRACT 

Winzeler, Hans E. Ph.D., Purdue University, December 2016. An Examination of 
Geographic Patterns of Soil Climate and its classification in the U.S. System of Soil 
Taxonomy. Major Professors: Brad Joern and Phillip R. Owens. 
 
 
Soil climate, the record of temporal patterns of soil moisture and temperature, is an 

important component of the structure of U.S. Soil Taxonomy. The U.S. Soil Survey has 

used the Newhall Simulation Model (NSM) for estimating soil climate from atmospheric 

climate records at weather stations since the 1970s.  The current soil climate map of the 

U.S. was published in 1994 by using NSM runs from selected weather stations along 

with knowledge-based hand-drawn mapping procedures. We developed a revised soil 

climate mapping methodology using the NSM and digital soil mapping techniques. 

The new methodology is called Grid Element Newhall Simulation Model (GEN), 

where a coordinate system is used to divide geographic space into a grid and each 

element or grid-cell serves as a reference area for querying and organizing model input, 

and for organizing and displaying model output. The GEN was used to make a soil 

moisture map of the conterminous U.S. (GEN-CONUS). GEN-CONUS and the 1994 map 

were compared to each other and to two sets of weather station data from years 1961 
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to 1990 and years 1971 to 2000 (National climate data center, NCDC). Agreement 

between GEN-CONUS and the 1994 map was 75.6%. GEN-CONUS had higher agreement 

than the 1994 map with NSM  

output from NCDC data for 1961-1990 and 1971-2000 (kappa = 0.845 and 0.777). The 

GEN methodology was also used to generate a map of projected soil climate in the year 

2080 for part of the Southern Rocky Mountains, predicting expansion of the Ustic and 

contraction of the Udic moisture regimes. 

Soil climate in the conterminous US is expected to change in response to global 

climate change. Soil moisture and temperature are strongly influenced by atmospheric 

climate variables. The Grid Element Newhall Simulation Model (GEN), an updated NSM 

for geographic raster data, was developed and applied in this project to future climate 

simulations available from International atmospheric climate prediction projects. These 

included a simulation of 1) current climate conditions, 2) climate in year 2070 under a 

radiative forcing increase scenario of 2.6 W m-2 above pre-industrial levels (a low 

estimate) and 3) climate in the year 2070 under a radiative forcing scenario increase of 

8.5 W m-2 (higher estimate). Soil climate classification was analyzed to determine the 

extent and character of soil climate reclassification that might be necessary in coming 

decades. Results indicate that 18% of the land area of the conterminous US would be 

reclassified into a new temperature regime in the low-radiative forcing scenario and 

37% would be reclassified in the high forcing scenario. In general, soil moisture 

decreased in future climate change scenarios, leading to increased water deficits for 

many geographic areas due to greater evapotranspiration and warmer soil temperature 
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during the growing season. The dominant temperature regime change was that from 

the Mesic temperature regime to the Thermic and Hyperthermic regimes under both 

the high and low radiative forcing increases. Changes from the colder temperature 

regimes in Northern states to more Mesic regimes was also noted.  The geographic 

pattern expected for changes in moisture regime shows far more change in the western 

part of CONUS than in the east, with changes from moist conditions to more arid 

conditions predominating. Some limited areas in the arid Southwest are expected to 

become wetter, particularly under the high radiative forcing estimate.  Orographic 

changes in moisture and temperature follow the general trend of increasing 

temperature and decreasing moisture in future climate change scenarios. 

 As a driver of soil development and a key factor of soil formation, climate 

influences physical and chemical properties of soils as they form from geological and 

biological material. In this study we examine soil climate as simulated by the NSM and 

its relation to georeferenced point observations of soil properties measured and 

recorded over many decades by the National Cooperative Soil Survey. The goal is to 

determine the strength and direction of relationships between geographic observations 

of soil properties that may have been influenced by climate and the simulations of soil 

climate for the same locations. An additional goal is to determine whether the NSM as a 

process model contributes substantially to an accounting of the interaction between 

atmospheric climate and any resulting soil properties, or whether a simpler 

observational model that does not include simulation of soil moisture and temperature 

interactions might be sufficient or superior to this simulation approach. The 
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observational model includes the same input directly taken from atmospheric climate 

datasets as that used to populate the NSM, but does not include simulation of how the 

atmospheric climate would translate into soil climate through simulation of moisture 

and temperature dynamics in the soil. 

 We find that the NSM may have some value as a tool to explain a few 

relationships between climate and soil properties observed in the NCSS dataset, but that 

direct observation without simulation also shows promise. Severe limitations in the 

NCSS data include unknown sampling biases, ambiguous geographical precision of 

observation, inconsistent sampling and analysis protocols, incomplete data records, etc. 

Limitations of the usefulness of the NSM include high levels of multicollinearity among 

model output parameters, adherence to moisture modelling behavior that does not 

account for the complexities of preferential flow, the assumption of free-drainage in all 

soils modelled, the lack of a ponding routine or a realistic accounting of snow melt 

dynamics, as well as other limitations. These limitations may restrict the results of this 

study from providing firm conclusions, but exploratory analysis does indicate some 

positive correlations between atmospheric climate and soil properties, particularly after 

atmospheric datasets are applied to simulation of soil climate through the NSM.
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CHAPTER 1. A METHODOLOGY FOR EXAMINING CHANGES IN SOIL CLIMATE 
GEOGRAPHY THROUGH TIME 

1.1 Introduction 

Soil climate may be defined as the long-term record of seasonal and diurnal 

patterns of perhaps the most dynamic properties of soils, those of moisture and 

temperature.  Historical maps of soil climate in the U.S. have largely been conceived of 

and displayed as thematic maps, with polygons delineating approximate geographic 

boundaries between taxonomic groupings. The traditional methodology for the 

production of such maps in the U.S. Soil Survey has relied on expert knowledge and 

delineation of areas by hand. This reliance on experts to create soil climate maps 

through manual delineation has several limitations (Zhu et al., 2001). These include 

limitations to the size of the soil body that can be delineated, limited ability to update 

maps rapidly and efficiently, and the inevitability of errors when maps are drawn with 

visual examination of environmental covariates (Zhu et al., 2001). In addition, hand-

delineated expert maps require experts for every map iteration, making them inefficient 

in cases when iterations are desirable, such as when maps of soils of multiple time 

periods are desired. Also, knowledge that facilitated the production of a map made with 

expert knowledge most often remains tacit within the mapping product (Hudson, 1992). 

When this happens discussion with the maker of the map may be the only way to 
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determine why certain delineations were made. This is particularly problematic in fields 

in which soil change is under study because the timescale for such change can be much 

longer than the working lives of individual investigators. Expert knowledge, if not 

systematically applied, can be inconsistent, with multiple experts providing conflicting 

or differing opinions. Some opinions may change given further evidence or 

consideration. In contrast to methodologies of mapping using hand delineation through 

expert knowledge, digital soil mapping techniques based on geographical information 

systems data layers use environmental covariates and models to produce map output in 

systematic repeatable ways (McBratney et al., 2003). In this paper we test whether map 

production through direct application of a soil moisture model to geospatial data layers 

can lead to more consistent model output than a historical hand-delineated map made 

using expert knowledge.  

Broad scale soil climate maps are useful in harmonization of local soil surveys, 

including the effort currently underway by the USDA/NRCS Soil Survey Division, the Soil 

Data Joining and Re-correlation initiative, to correct abrupt changes in soil maps at 

political boundaries (Dobos et al., 2010; Scheffe et al., 2012). Continental scale soil 

climate maps offer versions of soil properties that can be analyzed and used without 

artifacts caused by variations in analysis at local political boundary lines. As such, they 

can be correlated to soil taxonomic properties and integrated with historical soil maps 

to provide greater consistency. Broad-scale soil climate maps can also be generated for 

multiple iterations of climate data to assess climate change.  Future biotic conditions 

accompanying climate change, particularly with respect to soil climate as it affects 
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agricultural and forest productivity are a central interest of the USDA Climate Change 

Science Plan (USDA, 2012).  

Soil climate has been an important component of the taxonomic structure of 

U.S. Soil Taxonomy since the release of the 7th Approximation and the first publication of 

Soil Taxonomy (Soil Survey Staff, 1960; Soil Survey Staff, 1975). Soil climate 

characteristics have been used to differentiate taxa from the Order (the highest level) 

down to the suborder, great group, subgroup, family, and soil series levels.  Soil climate 

was originally envisioned in Soil Taxonomy to follow the older concepts of zonality and 

intrazonality (USDA, 1938), which were considered untenable as a natural classification 

because the concepts were not based on discernible soil properties (Smith, 1986). It was 

reasoned that soil climate properties, while often dynamic within daily, seasonal, and 

annual patterns, were nevertheless measurable quantities that could be observed and 

recorded.  Early adoption of soil climate concepts led to a recognition that though the 

markers of soil climate could be immediately observed (in terms of soil moisture 

content and soil temperature at the time of observation), the actual long-term climate 

that would determine a soil’s moisture or temperature regime would require 

extrapolation from records of atmospheric climate until appropriate data sets of long-

term soil climate could be populated (Smith, 1986).  

The process of soil climate simulation modeling based on atmospheric climate 

station data for various periods of record has been operational at the Order and 

Suborder level in mapping applications internationally (Van Wambeke, 1982), and 

within the U.S. (Smith, 1986; Soil Survey Staff, 1975; USDA-SCS, 1994) for the past four 
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decades. Recently, Bonfante et al. (2011) addressed gaps and resolution conflicts 

between physically-based models, USDA soil moisture classes, and climate-driven 

approaches such as the Newhall Simulation Model (NSM). They explored several 

strategies for improving soil climate estimates within soil taxonomy schemes and 

recommended simulation modeling as one viable approach. Other recommendations 

included a greater reliance on physical measurement and possible modifications of 

taxonomic definitions based directly on matric potential measurements taken over time 

rather than soil moisture control sections.  

The NSM is a software tool designed to integrate monthly atmospheric climate 

data into information relevant to soil classification categories by simulating soil moisture 

and temperature data for calendar days (Van Wambeke, 1982, 1986; Smith, 1986; 

Newhall and Berdanier, 1996; Jeutong et al., 2000; Yamoah et al., 2003). The NSM was 

originally developed by Guy Smith and Franklin Newhall in 1972 (Newhall and Berdanier, 

1996) and has been used by the U.S. National Cooperative Soil Survey to simulate soil 

climate for weather stations in soil survey areas (Smith, 1986; USDA-SCS, 1994; Van 

Wambeke, 1986). The most recent map of soil climate covering the continental U.S., Soil 

Climate Regimes of the United States (USDA-SCS, 1994), relied on the NSM to support 

mapping of soil moisture and temperature regimes.  The NSM has been used in the U.S. 

and internationally in studies of soil taxonomy, responses of crops to weather, and yield 

predictions (Bonfante et al., 2011; Van Wambeke, 1982; Jeutong et al., 2000; Yamoah et 

al., 2003; Costantini et al., 2002; Waltman et al., 2011). 
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The NSM is considered a mesoscale model. Because NSM assumes precipitation 

excess exits the soil as runoff or as deep percolation, resulting soil moisture estimates 

are only valid for well-drained soils associated with relatively level landscapes. The 

model lacks a runoff/ponding subroutine and functions on a calendar year rather than 

hydrological year with no carryover from the previous year. It does not account for 

snowmelt and also lacks a mechanism for accounting for antecedent moisture 

conditions. In spite of these limitations, it is widely believed that in most cases the NSM 

provides a reasonable approximation of soil moisture (number of days moist, days dry) 

and temperature (number of days <5oC to >8oC) on a monthly time-step. NSM does not 

require intensive, serially complete daily weather data, but rather monthly summary 

data of atmospheric precipitation and air temperature. Such input data is readily 

available for remote areas of the U.S. and many parts of the world. By contrast, field 

scale models are often more computationally complex and generally require additional 

measurements of wind speed, solar radiation, relative humidity, cropping, and other 

parameters in their evapotranspiration subroutines that are not easily acquired across 

broad geographic regions or remote mountainous landscape settings, and over long-

term temporal records (Costantini et al., 2002; Williams et al., 1989). The NSM 

generates a mesoscale approximation of soil climate that is applicable to soil survey and 

taxonomic classification (Smith, 1986). 

The NSM can be compared to similar process models, but it retains features 

uniquely suited to taxonomic classification of soil climate. While other models generate 

inferences of soil moisture and temperature parameters from climate records, such as 
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the field scale models EPIC and CENTURY (Costantini et al., 2002; Williams et al., 1989), 

the NSM couples water balance calculations more directly with available water-holding 

capacity and gives output of predicted soil taxonomic classes. The soil moisture calendar 

output from NSM defines the days that a soil’s moisture control section is moist, partly 

moist and partly dry, or dry within the context of soil temperature thresholds at 5oC and 

8oC. These thresholds are needed for taxonomic classification of soil moisture and 

temperature regimes. The soil moisture and temperature calendars given by the NSM 

are used to assign taxonomic classes according to US Soil Taxonomy (USDA, 1999).  

The scope of this paper is to apply the NSM to gridded raster atmospheric 

climate data sets using a Grid Element Newhall Simulation (GEN) methodology. Previous 

applications of the NSM have been limited to point observations of climate station data 

for a select number of climate data stations rather than gridded data sets covering 

complete geographic areas (USDA-SCS, 1994). The GEN methodology involves 

application of NSM to raster datasets for mapping soil moisture and offers several 

advantages. It gives complete geographic coverage of model output, rather than output 

for individual point observations, so that mapped patterns of NSM results can be 

visualized and analyzed geographically for a given period of climatic record. It operates 

independently of expert knowledge used in the soil climate mapping process and 

creates a more quantitative output that is not influenced by individual bias due to 

experiences limited to particular soil regions. While some regional knowledge is likely 

lost in the broad application of a simple model, greater efficiency and transparency is 

gained. Finally, multiple iterations of soil moisture output given differing input values of 
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atmospheric climate are possible. Rich data sets of atmospheric climate change can be 

run through the model, making the tool useful for studying soil change. 

The objective in this study is to introduce the GEN methodology and to determine 

whether spatially gridded geographic modeling of soil moisture regimes with the NSM 

using raster climate data better predicts NSM model moisture output for weather 

stations compared to a map made with more traditional expert knowledge methods. 

Two maps will be compared to each other and to weather station output. The two maps 

are: Soil Climate Regimes of the United States (USDA-SCS, 1994), and the digital output 

presented here (GEN-CONUS). 

1.2 Methods and Materials 

1.2.1 Software and Areal Estimates 

Mapping tasks were carried out using System for Automated Geoscientific 

Analysis (SAGA) software version 2.0.7 (SAGA, 2012) and ArcGIS 10 software (ESRI, 

2012). All areal estimates were made using Albers Equal Area projection parameters. 

Higher resolution map layers were resampled to the common ½ arc minute of 

geographic degree (approximately 800 m resolution in the projected condition) for the 

full extent of the Conterminous United States. All vector (polygons and point location) 

map products were projected and rasterized to the common target 800 m resolution in 

Albers Equal Area projection. 

1.2.2 The Newhall Simulation Model (NSM) 

The NSM, Java version 1.5.1 is an updated version of the original Newhall 

Simulation Model developed by Franklin Newhall and Guy Smith in 1972 (Newhall and 
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Berdanier, 1996; USDA-NRCS, 2011; Waltman et al., 2011; Waltman et al., 2012). The 

mechanics of the model were not changed in the Java version, but internal calculations 

and software architecture were updated and made more efficient. The NSM was used to 

simulate seasonal water balance patterns and calendars for soil moisture in the 

calculated soil moisture control section in three categories (moist, partly moist and 

partly dry, and dry) and temperature (number of days <5oC, 5 to 8oC, and >8oC), defining 

taxonomic windows of soil climate regimes.  

The mechanics of the NSM are briefly described here, but more detail can be 

found in Van Wambeke (1986) and Newhall and Berdanier (1996). In the NSM, the soil is 

assumed to behave as a reservoir with a fixed capacity determined by its water holding 

capacity. Water was added by precipitation (Newhall and Berdanier, 1996). Water in 

excess of retention capacity was assumed to exit the soil as runoff or deep leaching. 

Stored water was removed by evapotranspiration using Thornthwaite’s formula (1948). 

The soil was divided into segments of 25 mm of water retention difference to the depth 

of the available water holding capacity. It was then divided into 8 segments, each 

representing 3.13 mm of water retention difference. The moisture retention was 

assumed to range from 33 kPa, when all segments are filled, to 1500 kPa or dryer, when 

all segments are empty. The time step for the model was 360 days per year, with each 

month given equal influence of 30 days. Monthly precipitation was simulated in light 

precipitation events and heavy precipitation events. Light precipitation was assumed to 

account for half of the monthly precipitation in the first half of the month. Total 

monthly potential evapotranspiration using Thornthwaite’s formula (Thornthwaite, 
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1948) was subtracted from light precipitation to give net moisture activity (NMA). If the 

resulting value was positive the depth increments were filled, starting at the top of the 

soil column with half of the NMA. If negative, half of the NMA was applied to the soil 

column to exhaust the filled segments by diagonal removals called slants, starting with 

the lowest slant number. Slants were conceptualized as zones of moisture removal 

oriented diagonally at 45 degree angles from lower soil horizons toward surface 

horizons. Lower slants are closer to the lower soil horizons and higher slants are closer 

to the surface. Removal by consecutive slants, starting with lower slants and continuing 

to higher slants, required greater amounts of potential evapotranspiration units to 

remove water as the soil became dryer. Next, heavy precipitation was assumed to 

account for half of the monthly precipitation in the second half of the month. Heavy 

precipitation was applied to fill available segments by depth increments, and was not 

subject to evapotranspiration before being absorbed by the soil. The moisture control 

section was defined in Soil Taxonomy as having an upper boundary the depth to which a 

dry soil is moistened by 2.5 cm of water moving downward from the surface in 24 hours 

and a lower boundary as the depth to which a dry soil will be moistened by 7.5 cm of 

water within 48 hours (USDA, 1999). In the NSM this zone was approximated by the 

depths of the cumulative water retention difference of 25 and 75 mm (Newhall and 

Berdanier, 1996). For each moisture state generated (number of segments either wet or 

dry), the NSM classified the moisture control section either dry in all parts, dry in some 

parts and moist in other parts, or moist in all parts, for each day of the yearly analysis. 

An annual calendar of days moist, moist/dry, and dry was generated to make the final 
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determination of the soil moisture classification. This process was iterated for each of 

the approximately 12 million grid cells for the PRISM-STATSGO2 data set described 

below to create the output map (GEN-CONUS) examined in this paper. It was also used 

to classify soil climate from historical records from weather stations, as described 

below.  

While the scope of this paper was limited to examination of moisture regimes, 

the NSM also estimates temperature regimes and bioclimatic indicators. 

1.2.3 Weather Input Data 

The 30-year Normals of monthly precipitation and air temperature data were 

extracted from the weather stations of the National Weather Service(NWS) Cooperative 

Network (NCDC, 2012a; NCDC, 2012b) that were serially complete for the periods of 

1961-1990 and 1971-2000. (The term “normal” refers to a year in which the value for 

precipitation or temperature is plus or minus one standard deviation of the long-term 

mean annual value (USDA, 1999).) The total number of weather stations was 4,221 and 

5,032 for 1961-1990 and 1971-2000 periods, respectively and comprised the first two 

data sets for which the NSM was run.  The weather stations are distributed throughout 

the U.S. and are denser in the eastern part of the country compared to the west part 

(Figure 1.3) for the two periods of normals that were used in the validation process. The 

raster data set used in the GEN methodology was from the Parameter Regression on 

Independent Slopes model (PRISM, PRISM Climate Group, 2012; Di Luzio, et al., 2008) 

and included 30-year monthly precipitation and air temperature estimates provided in a 
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raster format at a resolution of ½ arc minute of degree for the climate record of 1971 to 

2000. 

1.2.4 Other Model Inputs 

Other input data consisted of root-zone Available Water Holding Capacity 

(AWHC) from the USDA-NRCS digital general soil map of the U.S. (STATSGO2) soil 

database in a raster format (1:250,000 scale; 250 m resolution grid) (USDA-NRCS, 2011; 

USDA-NRCS, 2007) and elevation from the shuttle radar topography mission (SRTM) 

data set (CGIAR, 2011).  

Elevation data were resampled from the native SRTM resolution to match the 

resolution of PRISM climate data inputs using bilinear convolution so that one elevation 

estimate was available for each climate data raster cell. Elevation was not used to 

calculate soil moisture in the GEN-CONUS output, but was collected as metadata in the 

operational database for future runs if temperature lapse rates due to elevation are 

required. In the PRISM datasets lapse rates were already accounted for, so calculating 

them again in the GEN-CONUS output would be redundant.  

The AWHC data layer was derived from effective rooting depth AWHC of the 

whole soil adjusted for rock fragments. The calculation of AWHC reflects particle size 

distribution, organic matter, depth to root restricting layer, salt content, and bulk 

density.  Miscellaneous land types and areas with zero values for AWHC were assumed 

to be non-soil in the model runs and were excluded from geographic analysis. This 

occurred in areas with water bodies, rock outcrop and badlands, urban lands, and other 

non-soil areas.  
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Each model run used model default values for the offset between mean annual air 

temperature and mean annual soil temperature of 2.5° C. 

1.2.5 The GEN Methodology 

In the Grid Element Newhall (GEN) Methodology a geographic area was segmented 

by a regular coordinate grid system. Each cell of the grid system provided a reference 

area in which data from all the input GIS layers were queried. The dataset for each grid 

cell element was then populated with values for each of the inputs required by the NSM 

for which spatially referenced data exist. These include monthly temperature and 

precipitation values, AWHC, latitude, longitude, and elevation (Figure 1.1). The NSM was 

then run individually for each grid cell and model outputs were then aggregated and 

classed for a thematic map. 
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 Figure 1.1. The Grid Element Newhall Simulation Model (GEN) methodology for 

creating maps of soil moisture regimes using the Newhall Simulation Model (NSM). 
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Monthly precipitation and mean air temperature normals are taken from the input 

raster data sets. Each grid cell of the ½ arc minute conterminous U.S. represents one 

model run. The model is run on consecutive grid cells until the geographic area of 

interest is covered.  

1.2.6 The Grid Element Newhall Conterminous U.S. Moisture (GEN-CONUS) Map 

The GEN methodology was run on each geographic ½ arc minute of degree of 

the conterminous U.S. with monthly total precipitation and mean monthly air 

temperature derived from PRISM data, a total of 12,114,036 model runs. Each model 

run consisted of the following inputs: 12 monthly air temperature rasters, 12 monthly 

precipitation rasters, AWHC estimates, elevation, latitude, and longitude. Output 

analyzed consisted of soil moisture regime classes for each of the 12,114,036 map 

pixels. The monthly air temperature and precipitation rasters (PRISM, 2011) represented 

30-year normal values for the climate period of 1971 to 2000. The minimum map 

delineation was limited by the pixel resolution of ½ minute of arc, or about 800 m. The 

output is referred to as the Grid Element Newhall Conterminous U.S. Moisture (GEN-

CONUS) map. 

1.2.7 The 1994 Map of Soil Moisture Regimes 

To test the hypothesis that the GEN methodology was useful for mapping soil 

moisture regimes for the U.S., the GEN-CONUS moisture regime map was compared to 

an existing analog soil climate map. The soil moisture regime portion of the Soil Climate 

map of the Conterminous U.S. (USDA-SCS, 1994) served as our reference data layer for 

geospatial analysis (Figure 1.2). This map is referred to as the 1994 map or analog map. 
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The USDA-SCS (1994) methodology for production of the 1994 map included manual 

delineations of the interpolated soil climate regimes on 1:1,000,000 topographic base 

maps from a collection of sources, such as hardcopy soil surveys, STATSGO maps, and a 

small sampling of Newhall Simulation Model runs for selected weather stations for an 

unspecified period of record. The documentation for the mapping product does not 

indicate how many weather stations or what period of atmospheric climate data were 

run through the NSM. Lines placed by the expert map makers were aided by visual 

inspection of assumed climate covariates (USDA-SCS, 1994). Procedures varied by state, 

with personnel in some states placing boundaries according to dominant vegetation 

maps, some according to previous maps of soil climate, and some based on soil 

temperature studies (USDA-SCS, 1994). The minimum delineation of the map is reported 

as 2,266 km2. 
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Figure 1.2. The Soil Climate Regimes of the U.S. (USDA-SCS, 1994) map represents a 
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traditional approach, aggregating from county and STATSGO2-level information, with a 

small sample of individual weather station runs of the Newhall Simulation Model, and 

combining these outputs with ad hoc regional expert knowledge or assumed rules. This 

visualization of the 1994 map shows only the moisture regimes, not moisture subgroups 

or temperature regimes. 

1.2.8 NSM Runs for Weather Stations for 1961 to 1990 and 1971 to 2000 Periods 

The NSM was run for all weather stations with complete data for two periods of 

interest, 1961-1990, and 1971-2000 (NCDC, 2012a; NCDC, 2012b). The first 30-year 

period represents the climate normal data that presumably would have been most 

influential in the development of the 1994 map (USDA-SCS, 1994). The second climate 

normal data set, 1971-2000, was used in the development of the PRISM data set 

(PRISM, 2011) that served as the input data for the GEN-CONUS map. The climate 

station locations, their ecological regions (USEPA, 2016), and the output of the soil 

moisture regimes in the GEN-CONUS map relative to ecological regions are shown in 

figure 1.3. 



     18 

 

                18 

 

Figure 1.3. a) The ecological regions given in USEPA (2016): 5 – Northern Forests, 6 – Northwestern Forested 

Mountains, 7 – Marine West Coast, 8 – Eastern Temperate Forests, 9 – Great Plains, 10 – North American Deserts, 11 

– Mediterranean California, 12 – Southern Semiarid Highlands, 13 – Temperate Sierras, 15 – Tropical Wet Forests; b) 

The GEN-CONUS output of soil moisture regimes (with the same color key as figure 1.2) with ecological zones; c) 

NCDC climate station data locations, 1961- 1990 ; and d) NCDC climate station data locations 1971-2000. In c) and d) 

black dots indicate climate stations with model output that matched the GEN-CONUS map; grey squares had output 

that did not match; and gray diamonds are stations on soils that were classed as Aquic in the SCS 1994 map. 
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1.2.9 Map Comparisons 

 To highlight differences in soil moisture regimes between the map produced by 

the GEN-CONUS methodology and 1994 map, both maps were overlain and areas of 

agreement were tabulated and analyzed using contingency table analysis techniques 

(Cohen, 1968). Cross tabulations of land area geographic extents of major taxonomic 

moisture regimes between the 1994 map and the GEN-CONUS output map were 

stratified by level 1 North American Ecoregions (USEPA, 2016) in order to facilitate 

understanding of areas where the two maps may differ to greater or lesser degrees. 

These ecoregions for North America divide the conterminous U.S. into 10 major 

ecological zones. This was done to highlight geographic patterns of major differences in 

the interpretation of soil moisture regimes.  

Cross tabulation of map areas was conducted after conversion of both maps to 

Albers equal area projection. Cross tabulation consists of examining two maps in the 

following way. The area of the first map classified with the first classification category is 

compared to the classification found in the second map for the same area. Total area of 

each classification category in the second map that falls within the area of the first 

classification category of the first map is summed. This is done for each classification 

category in the first map, until a list is populated with the total area of each 

classification category of the first map and all the classifications categories from the 

second map that geographically intersect the first map. 

Total land area for each polygon of each soil moisture regime was then 

calculated for the two maps. Land area classified into the 4 major soil moisture regimes 
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for the two maps was cross-tabulated. Because output from the NSM is largely 

constrained to well-drained upland soils without perched or permanent water tables, 

areas that were delineated as Aquic in the 1994 map were assumed to be Aquic, and 

were excluded from the comparison with GEN-CONUS. This exclusion ensured that soil 

landscapes that were dominantly driven by groundwater flow were not included in the 

spatial comparisons. 

1.2.10 Climate Station NSM Model Run Comparisons 

 Part of the difference between the two maps may result from the differences in 

atmospheric climate for the time period immediately preceding the publication of the 

1994 map and the 1971-2000 data set used to create GEN-CONUS. To test the extent to 

which such temporal climate change may have influenced map output, we analyzed two 

sets of climate station NSM output. Presuming that the best available data for the 

production of the 1994 map would have been the weather station data encompassing 

1961-1990, we used this set of climate normal as a proxy for a ground-truth for 

atmospheric climate for the period. Likewise we used the 1971-2000 climate normal as 

a proxy for a ground-truth relative to the GEN-CONUS map. We used contingency table 

analysis to compare the two sets of normals to determine whether climate differences 

may account for a large portion of the difference between the maps. 

1.2.11 Climate Change Illustration 

To illustrate the utility of the GEN methodology for soil climate forecasting, we 

ran a soil climate change simulation using the A1B scenario for climate change in the 

year 2080 from the Special Report on Emissions Scenarios (IPCC, 2000), for a portion of 
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the Rocky Mountains. The A1B scenario is characterized by rapid industrial and 

population growth and a balanced emphasis on multiple energy sources. Of the multiple 

climate change scenarios published in the report this scenario predicted the median 

amount of change for 2080. We used the Hadley Centre Coupled Model, Version 3 

(Gordon et al., 2000; Ramirez-Villegas and Jarvis, 2010; CIAT, 2012) with the A1B, 

because it represents a median amount of change compared to other scenarios.  

 These data are available in raster format from CIAT (2012) at the same spatial 

resolution as the PRISM data described in the GEN-CONUS described above. Twenty-

four rasters representing 12 monthly air temperature values and 12 monthly 

precipitation values expected in 2080 were obtained from CIAT (2012) and used for the 

climate change scenario. The GEN methodology was applied assuming that soil 

properties and elevation values used in NSM would be consistent with the STATSGO2 

values. The GEN methodology for the 2080 scenario is identical to the methodology 

described for the GEN-CONUS project, except that the future climate change scenario 

from CIAT (2012) was used as input rather than the raster dataset from PRISM. All other 

inputs were the same. The climate change scenario is referred to as the GEN2080 

 We applied the GEN methodology to Major Land Resource Areas 34A, 34B, 48A, 

48B, and 51 in the Rocky Mountain Range and Forest and the Western Range and 

Irrigated Region Land Resource Regions (USDA-NRCS, 2002). This area was chosen 

because of its high elevation contrast (1,200 to 4,300 m) and diversity of soil climate 

regimes over complex relief. This illustration was undertaken to show spatial patterns 

between elevation and the GEN-CONUS output, the 1994, and the GEN2080. 
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1.2.12 Statistical Analysis 

Contingency table analysis is a technique for finding dependence structures 

among multivariate categorical variables within two populations. First, the frequency 

distributions of all variables are displayed in tabular form, with the first population 

displayed along the x direction and the second along the y direction. Then, for each 

category in the first population, the frequency distributions of occurrence of all other 

populations from the second population are summed in sequence. The result is a table 

that summarizes all combinations of categorical cross tabulation. The tabular results are 

then analyzed using measures of association, such as Cohen’s kappa and percentage 

agreement. 

Statistical analysis included the application of Cohen's kappa coefficient for 

determining the degree of model agreement between map predictions of soil moisture 

regime class for unit of land area, and between map predictions and NSM runs using 

climate station data for specific point locations of climate stations. Cohen's kappa is 

given as 

𝐾𝐾 = Pr(𝑎𝑎)−Pr (𝑒𝑒)
1−Pr (𝑒𝑒)

   

[1] 

where Pr(a) is the agreement among maps where the number of instances (here, map 

pixels that are categorized identically) of agreement between the two maps is divided 

by the total number of instances of observations (the total number of map pixels), and 

Pr(e) is the probability of random agreement given as 
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Pr(𝑒𝑒) = (∑𝑛𝑛𝑖𝑖
𝑛𝑛

+ 𝑚𝑚𝑖𝑖
𝑛𝑛

)  

[2] 

where Pr(𝑒𝑒) is the probability of chance agreement assuming random selection, 𝑛𝑛𝑖𝑖 is the 

number of instances of the second population matching the 𝑖𝑖 th category in the first 

population and 𝑚𝑚𝑖𝑖 is the number of instances of the first population matching  the 𝑖𝑖 th 

category of the second population, and 𝑛𝑛 is the land area of the total population of map 

pixels (Cohen, 1968). Because kappa includes the probability of agreement occurring by 

chance, it is considered more robust than simple percent agreement.  

1.3 Results and Discussion 

General patterns in the GEN-CONUS map are roughly similar to those of the 1994 

map, but there are important differences (Figure 1.4). The overall agreement between 

the 1994 map and the GEN-CONUS map is 75.6% of land area, with a kappa agreement 

of 0.642 (Table 1). Differences between the two maps are strongest in the Southern 

Semiarid Highlands (12), with only 45.6 % agreement between the two maps (Table 2). 

The 1994 map predicts only Aridic and Ustic regimes for this ecological region, while the 

GEN-CONUS map predicts greater diversity including Aridic, Ustic, Udic, and Xeric 

moisture regimes. In fact, 51% of the land area in the Aridic region in the 1994 map is 

predicted to be Ustic in the GEN-CONUS map (Table 2). The ecological region with the 

highest kappa agreement is the Eastern Temperate Forests (5), with 98.8% agreement 

and a kappa coefficient of 0.730. This high level of agreement is due in part to the fact 

that 97% of the non-Aquic land area is classed as Udic in both maps. A sizable area 
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(16,800 km2) classed as Ustic in the GEN-CONUS map is classed as Udic in the 1994 map. 

Much of this area is found in Eastern Texas and may be due to negative summer water 

balance associated with higher evapotranspiration and relatively lower summer 

precipitation in the period of record. Differences in the Great Plains (9) ecological region 

include a higher prevalence of the Aridic moisture regime in the GEN-CONUS output 

(22% of the land area) than in the 1994 map (11% of the land area), and an overall 

agreement of 60.7% and kappa of 0.361. Because land areas categorized as Aquic in the 

1994 map were excluded from analysis, no analysis was done of the Tropical Wet 

Forests (15) region in the Southern tip of Florida, as it was entirely covered by the Aquic 

regime in the 1994 map. The Northern Forests (5) region showed 100% agreement 

between the two maps with the Aquic moisture regime excluded from analysis, with the 

Udic moisture regime comprising all 301,796 km2 of the map area.  
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Table 1.1. Contingency table showing overall level of agreement between maps of soil moisture 

regimes for the conterminous United States in land area (km2) meeting cross class groupings. Soil 

moisture regime maps compared are the 1994 map and the current Newhall Simulation Model 

output (GEN-CONUS) given in this paper. Locations mapped Aquic in the 1994 map were excluded 

from analysis. 

       
  1994 map    

GEN-CONUS map Aridic Ustic Udic Xeric 
Agreement 

(%) Kappa 
 --- km2 ---   

Aridic 1,170,456 391,160 23,820 98,587 75.6 0.642  
Ustic 290,696 1,058,982 158,521 136,017   
Udic 2,100 349,365 2,989,198 51,941   
Xeric 114,190 129,984 36,278 305,986   
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Table 1.2. Contingency table showing level of agreement between maps of soil moisture regimes for 

each of the 10 major ecological regions of the Conterminous United States in land area (km2) meeting 

cross class groupings. Soil moisture maps compared are the SCS 1994 map and the current Newhall 

Simulation Model output given in this paper. Locations mapped Aquic in the 1994 map were excluded 

from analysis. 

Eastern Temperate Forests (8) 
  1994 map   
 GEN-CONUS 

map 
Aridic Ustic Udic Xeric Agreement 

(%) 
Kappa 

  --- km2 ---   
 Aridic - - - -   
 Ustic - 36,381 16,800 -  98.8 0.730 
 Udic - 9,312 2,029,531 -   
 Xeric - 0 0 -   
Great Plains (9)     

   1994 map    
 GEN-

 
 

Aridic Ustic Udic Xeric   
  --- km2 ---   
 Aridic 133,879 334,371 4,428 -   
 Ustic 80,234 802,498 62,293 -  60.7  0.361 
 Udic 26 232,591 363,347 -   
 Xeric 15,745 106,415 6,527 -   
Marine West Coast (7)    
   1994 map    
 GEN-

 
 

Aridic Ustic Udic Xeric   
  --- km2 ---   
 Aridic - - - -   
 Ustic - 169 5,116 451  61.5  0.033 
 Udic - - 25,070 973   
 Xeric - 0 9,576 525   
Mediterranean California (11)   
   1994 map    
 GEN-

 
 

Aridic Ustic Udic Xeric   
  --- km2 ---   
 Aridic 1,496 - - 3,595   
 Ustic 8,057 381 854 9,984 75.9 0.151 
 Udic - 92 339 2,428   
 Xeric 19,063 322 382 138,455 

 
 
 
 

 
 

 
 North American Deserts (10)   

   1994 map    
 GEN-

 
 

Aridic Ustic Udic Xeric   
  --- km2 ---   
 Aridic 998,006 27,461 5,075 84,407   
 Ustic 163,483 25,696 13,883 22,882 73.0 0.220 
 Udic 581 887 821 2,543   
 Xeric 66,595 5,076 3,249 44,211   
Northern Forests (5) 
   1994 map    
 GEN-

 
 

Aridic Ustic Udic Xeric   
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  --- km2 ---   
 Aridic - - - -   
 Ustic - - - -  100  - 
 Udic - - 301,796 -   
 Xeric - - - -   
 
Northwestern Forested Mountains (6) 

 

   1994 map    
 GEN-

 
 

Aridic Ustic Udic Xeric   
  --- km2 ---   
 Aridic 13,363 7,708 627 17,249   
 Ustic 13,804 107,529 71,366 78,738 56.8 0.378 
 Udic 780 84,255 201,965 32,303   
 Xeric 12,643 11,405 19,012 137,308   

Southern Semiarid Highlands (12) 

   1994 map    
 GEN-

CONUS 
 

Aridic Ustic Udic Xeric   

  --- km2 ---   
 Aridic 14,898 113 - -   
 Ustic 19,860 5,732 - - 45.6 0.142 
 Udic 361 539 - -   
 Xeric 3,520 211 - -   
Temperate Sierras (13) 
   1994 map    
 GEN-CONUS 

 
Aridic Ustic Udic Xeric   

  --- km2 ---   
 Aridic 4,254 8,816 - -   
 Ustic 11,447 59,539 - - 55.8 0.032 
 Udic 561 25,278 - -   
 Xeric 1,298 3,123 - -   
Tropical Wet Forests (15) (not analyzed, entirely Aquic) 
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 Figure 1.4. Grid Element Newhall Simulation Model (GEN-CONUS) map of soil moisture regimes made from 

gridded output from PRISM data, STATSGO2 data, and elevation data run through Newhall Simulation Model. The 

Aquic mask indicates areas that were classified as Aquic in the 1994 map and were excluded from analysis because 

the NSM does not model the Aquic moisture regime. 
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Comparisons between NSM output from the climate station locations for the 

periods 1961-1990 and 1971-2000 showed strong agreement (92%), indicating that 

differences in modeled soil climate for the two periods were likely relatively minor and 

that comparisons between the two maps (the 1994 map and the GEN-CONUS map) 

would not be overly influenced by differences in soil climate when the maps were 

produced (Table 1.3). The GEN-CONUS map showed agreement of 90.1%, kappa 0.845, 

with the climate station output for the period 1971-2000. The 1994 map had less 

agreement with the climate stations, 75.6%, kappa 0.623, for the period immediately 

preceding map production, 1961-1990. Interestingly, the GEN-CONUS map had higher 

agreement with the climate stations in 1961-1990 than the 1994 map had, kappa 0.777, 

even though GEN-CONUS was produced using the PRISM data set that was based on 

climate from the 1971-2000 period. This indicates that the GEN-CONUS map is a more 

consistent representation of NSM output than the 1994 map for both periods that were 

analyzed and that climate differences between the two periods of record were probably 

not a major factor in the differences between the two maps.  
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Table 1.3. Contingency table showing overall level of agreement between Newhall Simulation 

output for climate station data and the 1994 map, and for the station data and the Grid Element 

NSM (GEN-CONUS) output map. The table shows the number of climate stations in each 

moisture regime by calculation period meeting cross class groupings. 

  NCDC Climate Normals 1961-1990   

NCDC 
Climate 
Normals 
 1971-2000 Aridic Ustic Udic Xeric 

Agreement 
(%) Kappa 

 --- # stations ---   
Aridic 816 8 0 5 91.9 0.869 
Ustic 99 487 33 24   
Udic 0 52 2161 4   
Xeric 65 39 0 245   

 
 
 

 GEN-CONUS map   

NCDC 
Climate 
Normals  
1971-2000 Aridic Ustic Udic Xeric   
 --- # stations ---   

Aridic 816 51 19 29 90.1 0.845 
Ustic 36 631 48 20   
Udic 8 30 2,206 1   
Xeric 156 31 0 234   

       
  1994 map   
NCDC 
Climate 
Normals  
1961-1990 Aridic Ustic Udic Xeric   
 --- # stations ---   

Aridic 486 309 72 79 75.6 0.623 
Ustic 38 375 83 79   
Udic 2 143 1,787 25   
Xeric 25 41 21 190   

  GEN-CONUS map   
NCDC 
Climate 
Normals  
1961-1990 Aridic Ustic Udic Xeric   
 --- # stations ---   

Aridic 688 114 7 71 85.1 0.777 
Ustic 19 535 21 47   
Udic 5 230 1,681 0   
Xeric 7 29 1 238   
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Figure 1.5a gives a view of output for the Rocky Mountain Range and Forest and 

the Western Range and Irrigated Region Land Resource Regions SRTM elevation. GEN-

CONUS output (Figure 1.5c) shows greater adherence to topographical effects in the 

region than the 1994 map (Figure 1.5b). In the GEN-CONUS output for the region, 94.7% 

of the land area above elevation 3,300 m (16,048 km2) is classified as Udic, while 89% of 

the land area above elevation 3,300 m (15,135 km2) is classified as Udic in the 1994 

map. Due to topographical orographic effects, these high-elevation areas are in fact 

more likely Udic than Ustic.   
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Figure 1.5. Rocky Mountain Range and Forest and the Western Range and Irrigated 

Region (USDA-NRCS,2002). Upper left: a digital elevation model for the area of interest; 

upper right, the soil moisture regimes for the region given in the 1994 SCS map; lower 

left: GEN-CONUS output for the 1971-2000 climate data; lower right: GEN output for the 

A1B climate change scenario (IPCC, 2000; CIAT, 2012) in the year 2080. The yellow lines 

in A indicate state boundaries of Wyoming, Colorado, Utah, Arizona, and New Mexico. 
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Figure 1.5d shows the climate change scenario in 2080 using the GEN 

methodology. While a direct comparison between the GEN-CONUS map and GEN2080 is 

not straightforward because the methodologies used to create the input data from the 

two data sources discussed above differ, the two output maps indicate an increase in 

the Ustic moisture regime of about 40% of land area and a decrease in the Udic 

moisture regime of around 12%. With the GEN methodology applied to future climate 

simulations soil scientists can visualize changes in soil climate. Understanding the 

change in soil climate may provide better planning for climate change scenarios. 

1.4 Conclusion 

The most important difference between the 1994 moisture regime map and the 

GEN-CONUS map is that of methodology.  The 1994 map is a static thematic analog map 

developed by experts working with limited data to convey knowledge about soil climate. 

The GEN-CONUS map is a systematic application of a soil climate model to an 

atmospheric data set with no expert intervention. As such, its primary purpose is to 

clearly display the results of model output. The GEN methodology is repeatable and can 

be run in different iterations with differing data sets, as the GEN2080 scenario 

illustrates. The 1994 analog map is a snapshot of what a particular group of experts 

assembled for the purpose of creating a map accomplished at a given time given the 

best information available to them. As such, it is not repeatable and no iterations can be 

run.  

Hudson (1992) argued that soil maps created through expert knowledge are 

often based on understandings of relationships between soil forming factors and soil 
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properties that are not verbally or numerically expressed. He referred to this as the 

problem of tacit knowledge and claimed that it creates serious inefficiencies in soil 

survey operations. In mapping projects based on tacit knowledge, the output map itself 

is often the only published expression of the understanding of the mapping soil 

scientist. In order to be repeated by new investigators, a large body of understanding 

has to be built in the mind of each investigator. The GEN methodology, by contrast, is a 

completely transparent methodology for transforming data of atmospheric climate into 

soil climate classifications. Such a transparent methodology allows for systematic 

examination of processes that influence the reliability of eventual output. The task for 

improving a map becomes not one of increasing the expertise of the map makers who 

can be relied upon to make improved maps, but one of either improving the 

assumptions that drive the model that makes the map, or of improving the accuracy of 

the underlying data. 

The GEN methodology offers greater flexibility than the methodology of the 

1994 map because it allows for changes in input or model function, such as different 

scenarios of atmospheric climate inputs, improved estimates of atmospheric climate 

inputs, and improvements in subroutines of the model. As such it is infinitely iterable. 

The GEN-CONUS map can be thought of as a visualization of an iteration of the GEN 

methodology. Such an approach lends itself to multiple iterations with incremental 

improvement, each of which can result in an output map expressing a current state of a 

mapping effort. Because expert knowledge is not used in map production, model runs 

can be easily made whenever improvements might facilitate higher accuracy of 
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mapping. Expert knowledge remains an important component of the process by its 

assessment of model output and by its application to model improvement. 

Because the GEN-CONUS map had a higher level of agreement with the NSM 

output for climate station normals for both 1961-1990 and 1971-2000, it is a better 

representation of the results of the Newhall Simulation Model on the specific 

geographic application of the conterminous U.S. than the map produced by the Soil 

Conservation Service in 1994. This is not necessarily to say that it is a better map. While 

adherence to a model that the U.S. soil mapping community has embraced and widely 

used for 40 years is remarkable, extensive testing of the NSM model against real long-

term measures of soil moisture and temperature is needed.
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CHAPTER 2.  MAPPING SOIL CLIMATE CHANGE WITH DIGITAL SOIL MAPPING USING A 
GEOGRAPHICAL SOIL CLIMATE SIMULATION MODEL 

2.1 Introduction 

Soil climate is the long-term record of seasonal and diurnal patterns of moisture 

and temperature in soil (Brady and Weil, 2001). Soil moisture is a key variable that 

constrains plant transpiration and photosynthesis and can impact water, energy 

biogeochemical cycles (Seneviratne et al., 2010). Soil temperature influences 

evapotranspiration rates, biomass production, chemical and physical weathering of 

parent materials, biotic activity, and soil organic matter dynamics (Brady and Weil, 

2001; Jobbagy and Jackson, 2000). Accelerated climate change driven by increased 

radiative forcing ongoing in this century, is expected to have profound influence on 

natural and agricultural systems in decades to come, with long-term repercussions in 

subsequent centuries (IPCC, 2014; Rosenzweig et al., 2008). These changes will influence 

plant transpiration and photosynthesis, water, energy and biogeochemical cycles, and 

land-use. Estimates may be important to assess future seasonal and diurnal patterns of 

soil moisture and temperature that can be expected under scenarios of climate change 

(Seneviratne et al., 2010). Soil climate is always changing, but its patterns are 

predictable to some degree within the context of atmospheric climate and particular soil 

properties relevant to the status of soil moisture and temperature fluctuations. In this 
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paper we examine future and current soil climate through the Grid Element Newhall 

Simulation Model (GEN) developed to allow for geographical application of the Newhall 

Simulation Model to facilitate mapping of soil change (Winzeler et al., 2013). The GEN 

can be considered a geographical tool used to examine soil climate in scenarios of 

climate change within a digital soil mapping (DSM) context.  

DSM is a set of techniques oriented within geographical information systems 

(GIS) in which environmental covariates, legacy soil data, and models are used to 

produce soil map output in systematic and repeatable ways (McBratney et al., 2003). 

Soil covariates are incorporated into DSM because it has been widely demonstrated that 

soils vary across geographical space as influenced by spatially distributed soil forming 

factors (Jenny, 1941). Many of the so-called 5 state factors of soil formation can be 

represented through environmental covariate datasets. Datasets representing geologic 

age and composition of parent materials, topography, climate, and organisms are 

available to be integrated within GIS in a DSM context. One of the goals of DSM is to 

produce a soil spatial prediction function with spatially autocorrelated errors 

(McBratney et al., 2003). Tools within DSM include georeferenced global datasets, 

uniform raster formats, and software tools for integrating disparate datasets into a 

cohesive whole (Waltman, S.W., 2011; Global workshop on Digital Soil Mapping, 2015). 

Soils are currently changing and anticipated to continue to change due to direct 

effects from climate change and indirectly through their various responses to climate 

change (Davidson and Janssens, 2006). Climate influences soil properties by governing 

patterns of moisture and temperature fluctuation in soils as well as influencing soil-
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forming factors that can drive processes of soil change (Davidson and Janssens, 2006; 

Cowell and Urban, 2010). Fluctuations of soil moisture and temperature affect soil 

carbon, primary weathering rates, mineralization and nutrient cycling rates, and 

oxidation rates (Brady and Weil, 2001). Temperature influences soil carbon 

decomposition in complex ways, potentially creating positive or negative feedback loops 

by stimulating both primary productivity as well as microbial decomposition rates of soil 

carbon sources (Davidson and Janssens, 2006; Lal, 2004). Climate change, due to 

internal and external forcing mechanisms, is predicted to cause a rise of global surface 

temperature over the 21st Century (IPCC, 2014). Temperatures in soils are expected to 

rise globally, with soils undergoing higher rates of potential evapotranspiration and 

consequently greater water deficits during the growing season in many areas (Cowell 

and Urban, 2010). 

The climate simulation model used by the National Cooperative Soil Survey to 

support soil mapping efforts was developed in 1972 by Guy Smith and Franklin Newhall 

and is commonly referred to as the Newhall Simulation Model (NSM) (Newhall and 

Berdanier, 1996). It was developed as a way to simulate the ways in which atmospheric 

climate influences soil moisture and temperature conditions. The distinction between 

atmospheric climate and soil climate is important because soil moisture and 

temperature are influenced by variables distinct from atmospheric climate such as 

aspect, topography, snowmelt dynamics, insolation, and soil properties such as organic 

matter content, particle size, texture, moisture holding capacity, and others. (Smith, 

1986). Soil climate classes in the U.S. were developed to accord with observations of 
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natural vegetation and cropping patterns (Smith, 1986).  Temperature regime as 

estimated for the soil in the NSM is valid for the main root zone, estimated to be 

between a depth of 5 to 100 cm (Soil Survey Staff, 1999). The moisture regime is 

estimated from the moisture control section (MCS), which is defined as having an upper 

boundary of the depth to which a dry soil (tension of more than 1500 kPA, but not air-

dry) will be wetted by 2.5 cm of precipitation in a 24-hour period and a lower boundary 

the depth to which the same soil will be wetted by 7.5 cm of precipitation in a 48 hour 

period (Soil Survey Staff, 1999). The purpose of the development of the MCS was to 

permit calculation of moisture regimes from the climate record with the NSM (Smith, 

1986). The upper limit was chosen such that periods of measured dryness would not be 

influenced by brief light showers during the dry season in dry landscapes, and the lower 

limit was arbitrarily selected so as to limit the depth when calculating the moisture 

status from the soil climate (Smith, 1986) 

The NSM is considered a mesoscale model. Because NSM assumes precipitation 

excess exits the soil as runoff or as deep percolation, resulting soil moisture estimates 

are valid for well-drained soils associated with relatively level landscapes. The model 

lacks a runoff/ponding subroutine and functions on a calendar year rather than 

hydrological year with no carryover from the previous year. It does not account for 

snowmelt and also lacks a mechanism for accounting for antecedent moisture 

conditions. In spite of these limitations, it is widely believed that in most cases the NSM 

provides a reasonable approximation of soil moisture (number of days moist, days dry) 

and temperature (number of days <5oC to >8oC) on a monthly time-step. NSM does not 
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require intensive, serially complete daily weather data, but rather monthly summary 

data of atmospheric precipitation and air temperature. Such input data is readily 

available for remote areas of the U.S. and many parts of the world, and is useful on 

raster datasets with complete grid-cell coverage of geographic areas. By contrast, field 

scale models are often more computationally complex and generally require additional 

measurements of wind speed, solar radiation, relative humidity, cropping, and other 

parameters in their evapotranspiration subroutines that are not easily acquired across 

broad geographic regions or remote mountainous landscape settings, and over long-

term temporal records (Costantini et al., 2002; Williams et al., 1989). The NSM 

generates a mesoscale approximation of soil climate that is applicable to soil survey and 

taxonomic classification (Smith, 1986). The NSM has been used in the U.S. and 

internationally in studies of soil taxonomy, soil mapping, responses of crops to weather, 

and yield predictions (Bonfante et al., 2011; Emadi et al., 2016; Van Wambeke, 1982; 

Jeutong et al., 2000; Yamoah et al., 2003; Costantini et al., 2002; Waltman et al., 2011). 

The NSM was recently updated to Java version 1.6.0, allowing for greater cross-

platform versatility of the model (Waltman, 2012). The Grid Element Newhall (GEN) 

methodology was then developed to allow for updates to soil climate maps coincident 

with updated and newly available atmospheric climate datasets (Winzeler et al., 2013). 

GEN represents a continuous coverage pixel-by-pixel application of NSM for continental-

scale rasters of soil climate. The GEN methodology is used in this study to obtain soil 

climate classifications for soil temperature and moisture regimes for different scenarios 

of climate change. This methodology will allow for analysis of soil change in terms of 
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classification differences in soil moisture and temperature regimes from today’s climate 

to climate after 60 years of climate change under different predicted radiative forcing 

scenarios.  

Atmospheric climate model output from general circulation models is available 

for download to researchers studying climate change. A leading model for researchers in 

North America is ModelE2 from the Goddard Institute for Space Studies of the National 

Aeronautics and Space Administration (Nazarenko et al., 2015). It represents an 

institutional branch of the international effort to model climate in the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) with simulations of atmospheric radiative 

forcing scenarios outlined in the 5th Assessment Report of the IPCC. The CMIP5 datasets 

for this study are available from the Worldclim.org public interface (Hijmans, et al., 

2005; Nazarenko et al., 2015; IPCC, 2014). 

GEN can be used to give estimates of soil change by integrating geographically 

referenced climate prediction data with georeferenced soil information (Winzeler et al., 

2013). We use it here in this study on the datasets describing future climate scenarios 

obtained from NASA in order to examine the ways in which soils can be expected to 

change with changing climate in the entire Conterminous U.S.A. (CONUS).  

2.2 Methods and materials 

Mapping tasks were carried out using System for Automated Geoscientific Analysis 

(SAGA) Software version 2.0.7 (SAGA, 2012) and ArcGIS 10 software (ESRI, 2012). All 

areal estimates were made using Albers Equal Area projection parameters. Higher 

resolution map layers were resampled to the common 2.5 arc minute of geographic 
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degree (approximately 4.5 km resolution in the projected condition) for the full extent 

of the Conterminous United States. All vector (polygons and point location) map 

products were projected and rasterized to the common target 2.5 km resolution in 

Albers Equal Area projection. 

2.2.1 Grid Element Newhall Simulation Model (GEN) 

The GEN methodology is a geographic application of the Newhall Simulation 

Model. NSM was originally designed to operate on inputs of monthly temperature and 

precipitation summaries available from discreet weather stations. GEN takes advantage 

of the availability of datasets representing climate variability across geographic space in 

regularly spaced grid cells by applying the NSM sequentially to grid cells to represent 

uninterrupted geographic space. In GEN each grid cell of a continuous raster dataset 

representing monthly precipitation and temperature data for a given geographic region 

is coupled with soil information and run through the model to generate output. Inputs 

to the model include monthly temperature and precipitation values for current and 

future climate scenarios, available water holding capacity of the soil (AWHC), latitude, 

longitude, and elevation. Elevation for each grid cell was obtained from the Shuttle 

Radar Topography Mission (SRTM) data set (CGIAR, 2015). The AWHC data layer was 

derived from effective rooting depth AWHC of the whole soil adjusted for rock 

fragments (Waltman, 2011; USDA-NRCS, 2007). The calculation of AWHC reflects 

particle size distribution, organic matter, depth to root restricting layer, salt content, 

and bulk density.  Miscellaneous land types and areas with zero values for AWHC were 

assumed to be non-soil in the model runs and were excluded from geographic analysis. 
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This occurred in areas with water bodies, rock outcrop and badlands, urban lands, and 

other non-soil areas. The GEN was run for each grid cell and model outputs were 

aggregated and classed to make thematic maps. The technique allows for model runs to 

be updated when new model inputs become available.  

In the NSM, the soil is assumed to behave as a reservoir with a fixed capacity 

determined by its water holding capacity. Water was added by precipitation (Newhall 

and Berdanier, 1996). Water in excess of retention capacity was assumed to exit the soil 

as runoff or deep leaching. Stored water was removed by evapotranspiration using 

Thornthwaite’s formula (1948). The soil was divided into segments of 25 mm of water 

retention difference to the depth of the available water holding capacity. It was then 

divided into 8 segments, each representing 3.13 mm of water retention difference. The 

moisture retention was assumed to range from 33 kPa, when all segments are filled, to 

1500 kPa or dryer, when all segments are empty. The time step for the model was 360 

days per year, with each month given equal influence of 30 days. Monthly precipitation 

was simulated in light precipitation events and heavy precipitation events. Light 

precipitation was assumed to account for half of the monthly precipitation in the first 

half of the month. Total monthly potential evapotranspiration was subtracted from light 

precipitation to give net moisture activity (NMA). If the resulting value was positive the 

depth increments were filled, starting at the top of the soil column with half of the 

NMA. If negative, half of the NMA was applied to the soil column to exhaust the filled 

segments by diagonal removals called slants, starting with the lowest slant number. 

Slants were conceptualized as zones of moisture removal oriented diagonally at 45 
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degree angles from lower soil horizons toward surface horizons. Lower slants are closer 

to the lower soil horizons and higher slants are closer to the surface. Removal by 

consecutive slants, starting with lower slants and continuing to higher slants, required 

greater amounts of potential evapotranspiration units to remove water as the soil 

became dryer. Next, heavy precipitation was assumed to account for half of the monthly 

precipitation in the second half of the month. Heavy precipitation was applied to fill 

available segments by depth increments, and was not subject to evapotranspiration 

before being absorbed by the soil. The moisture control section was defined in Soil 

Taxonomy as having an upper boundary the depth to which a dry soil is moistened by 

2.5 cm of water moving downward from the surface in 24 hours and a lower boundary 

as the depth to which a dry soil will be moistened by 7.5 cm of water within 48 hours 

(USDA, 1999). In the NSM this zone was approximated by the depths of the cumulative 

water retention difference of 25 and 75 mm (Newhall and Berdanier, 1996). For each 

moisture state generated (number of segments either wet or dry), the NSM classified 

the moisture control section either dry in all parts, dry in some parts and moist in other 

parts, or moist in all parts, for each day of the yearly analysis. An annual calendar of 

days moist, moist/dry, and dry was generated to make the final determination of the 

soil moisture classification. This process was iterated for each of the approximately 

480,000 grid cells for each climate layer available from Worldclim at 2.5 ArcMinutes of 

spatial resolution (Hijmans et al., 2005). 

The categorical delineations among concepts of soil moisture and temperature 

regimes were developed in the US system of Soil Taxonomy, in part, to match observed 
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geographic patterns of cropping and land use management. Smith mentions the use of 

temperature isotherms 22°, 15°, and 8°C to separate areas suited to the production of 

citrus, cotton, winter wheat, spring wheat, corn, and small grains (Smith, 1986). Output 

from the NSM relies on fine temperature and moisture delineations relevant to 

cropping. 

2.2.2 Climate data 

GEN methodology was applied to three climate datasets for different climate change 

scenarios to obtain soil climate classification within the context of US Soil Taxonomy for 

the entire CONUS. 

1) Current conditions (approximate radiative forcing of approximately 2.9 W m-2 

radiative forcing relative to pre-industrial levels); and 

2) Conditions predicted in 2070 under the influence of an increase of 2.6 W m-2 

radiative forcing relative to pre-industrial levels; and  

3) Conditions predicted in 2070 under the influence of an increase of 8.5 W m-2 

radiative forcing. 

Radiative forcing is defined as the rate of energy change at the top of the 

atmosphere relative to pre-industrial energy levels considered to be the year 1750.  

Output obtained included soil temperature and moisture regimes for these three 

different climate scenarios. Soil changes were analyzed in terms of classification 

differences in soil moisture and temperature regimes from today’s climate to climate 

after 50+ years of global climate change predicted under the two different radiative 

forcing scenarios.  
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 Data simulated from Global Circulation Model E for representative concentration 

pathways from climate projections used in the Fifth Assessment IPCC Report Coupled 

Model Intercomparison Project 5 (CMIP5) was obtained from WorldClim.org (Hijmans et 

al., 2005). Model output chosen was the GISS-E2 model from NASA Goddard Institute 

for Space Studies (Nazarenko et al., 2015) under scenarios representing representative 

concentration pathways 2.6 W m-2 and 8.5 W m-2. These two scenarios were chosen as 

they represent the higher and lower radiative forcings considered by the IPCC in the 5th 

assessment document, and can be thought of as lower and higher scenarios for climate 

change respectively (IPCC, 2014). Year 2070 was chosen as it was considered close 

enough in the recent future to be relevant to today’s land-use decisions and distant 

enough to show significant effects of climate change. 

2.2.3 Analysis  

Analysis of output was conducted first by dividing the CONUS region into 20 dominant 

North American Ecoregions (NAE) representing 20 areas of general similarity in type, 

quality, and quantity of environmental resources (USEPA, 2016). Total land area falling 

in each classification category for soil moisture and temperature regime was summed 

for each NAE in each of the three climate scenarios. Comparisons among radiative 

forcing scenarios were used to indicate the extent of soil climate change predicted for 

each NAE. Contrasts for the change in land area extent under each soil and moisture 

class for each NAE were summarized. The area of change from one moisture regime to 

another and from one temperature regime to another was summed and characterized. 
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2.3 Results and Discussion 

Soil climate for 2070 was, in general, warmer and less moist than current conditions, 

with land area classed as Udic declining between 4% - 8% and that classed as Thermic 

increasing between 6% - 15% (Figures 2.1 -2.3). Land area classed with Ustic, Aridic, and 

Xeric moisture regimes increased, reflecting decreasing amounts of seasonal soil 

moisture in summers in future scenarios with higher evapotranspiration rates expected 

with higher temperatures. Land area of the Cryic, Frigid, and Pergelic moisture regimes 

decreased markedly in both 2070 scenarios relative to the current conditions with 

increasing temperature in simulations in 2070. Because the Aquic moisture regime is not 

handled by the NSM and because it is not known how long a duration of saturation 

leads to formation of an Aquic Moisture Regime, there is no clear way to determine 

changes in the large areas of aquic moisture regime in future climate change scenarios. 

Presumably it could be greater along costs with sea level rise and could increase in 

inland areas experiencing increased rainfall and decrease in areas predicted to have less 

rainfall. It is worth noting, however, that the aquic moisture regime is not used as a 

formative element or even a criterion in taxa in Soil Taxonomy (Soil Survey Staff, 1999). 

Because the NSM relies on an assumption of free drainage and is not able to predict 

aquic conditions, all output examined is valid only for well-drained soils. The NSM only 

predicts soil moisture regimes that are used above the series level. (“The formative term 

“aqua” [when used in suborder designations] refers to aquic conditions, not an aquic 

moisture regime” – Soil Survey Staff, 1999.)  
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 Figure 2.1. Land area for Conterminous U.S.A. moisture regimes (left) and 

temperature regimes (right) under current conditions, and conditions (Thermic class 

here also includes hyperthermic) predicted in 2070 under 2.6 W m-2 and 8.5 W m-2 

radiative forcing scenarios from GEN model applied to GISS-E2 model. 
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Figure 2.2. Moisture regimes predicted for a) current conditions and for conditions 

predicted in 2070 under b) 2.6 W m-2 and c) 8.5 W m-2 radiative forcing scenarios from 

GEN model applied to GISS-E2 model. 
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Figure 2.3. Temperature regimes predicted for a) current conditions and for conditions 

predicted in 2070 under b) 2.6 W m-2 and c) 8.5 W m-2 radiative forcing scenarios from 

GEN model applied to GISS-E2 model. 
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 Summary data for moisture and temperature regimes in individual ecological 

regions indicates decreases in soil moisture associated with greater evapotranspiration 

in 2070 scenarios relative to current conditions as well as greater soil temperature 

(Figure 2.4 and Tables 2.1 and 2.2). Mountainous and highland regions such as the 

Western Cordillera are expected to become warmer and drier, with many elevation-

influenced cold regions moving from Frigid and Cryic regimes to Udic or Ustic. Pergelic 

regimes in this ecological zone are expected to become severely reduced in area as 

many become Cryic or Frigid, or even Mesic.
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Table 2.1. Summary data for soil moisture regimes in individual ecological regions under current conditions, conditions in 2070 under low radiative forcing, and in 2070 

under high radiative forcing. 

  Current Conditions  Year 2070, Low Radiative Forcing, 2.6 

W m-2 

 Year 2070, High Radiative Forcing, 

8.5 W m-2 

Map 

Code 

North American Ecological 

Zone 

Udic Ustic Aridic Xeric  Udic Ustic Aridic Xeric  Udic Ustic Aridic Xeric 

  Land area %                     

__________________________ 

  Land area %                     

__________________________ 

 Land area %                     

_________________________ 

1 Atlantic highlands 100 0 0 0  100 0 0 0  100 0 0 0 

2 Central USA plains 100 0 0 0  100 0 1 0  94 5 1 0 

3 Cold Deserts 1 9 87 4  0 10 87 3  0 5 93 1 

4 Everglades 88 11 0 0  84 15 0 0  76 23 0 0 

5 Marine west coast forest 78 22 0 0  70 28 0 2  65 27 0 7 

6 Mediterranean California 0 8 5 87  0 11 3 87  0 7 2 91 

7 Mississippi alluvial and 

Southeast USA coastal plains 

96 4 0 0  90 10 0 0  87 13 0 0 

8 Mixed wood plains 100 0 0 0  100 0 0 0  99 1 0 0 
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9 Mixed wood shield 100 0 0 0  100 0 0 0  99 1 0 0 

10 Ozark-Ouachina-Appalachian 

forests 

100 0 0 0  99 1 0 0  95 5 0 0 

11 South cental semiarid prairies 24 42 34 0  11 49 37 3  3 50 44 4 

12 Southeastern USA plains 93 7 0 0  89 11 0 0  85 15 0 0 

13 Tamailipas-Texas semiarid 

plain 

0 66 33 1  0 63 37 0  0 34 66 0 

14 Temperate prairies 76 21 2 0  76 20 3 1  62 33 5 0 

15 Texas-Louisiana coastal plain 61 29 10 0  50 32 18 0  59 22 18 0 

16 Upper Gila Mountains 11 43 32 14  8 65 23 4  2 61 31 6 

17 Warm Deserts 0 8 83 9  0 17 79 4  0 18 78 4 

18 West-Central semiarid prairies 2 66 27 5  0 48 49 2  0 34 66 0 

19 Western Cordillera 36 41 15 8  27 45 20 8  19 49 25 8 

20 Western Sierra Madre 

piedmont 

0 30 50 20  1 50 38 12  0 60 32 8 
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Table 2.2. Summary data for soil temperature regimes in individual ecological regions under current conditions, conditions in 2070 under low radiative forcing, and in 
2070 under high radiative forcing. 

  Current Conditions  Year 2070, Low Radiative Forcing  Year 2070, High Radiative Forcing 

Map 

Code 

NAE Thermic/

HyperTh. 

Me

sic 

Cr

yic 

Fri

gid 

Perg

elic 

 Thermic/

HyperTh. 

Me

sic 

Cr

yic 

Fri

gid 

Perg

elic 

 Thermic/

HyperTh. 

Me

sic 

Cr

yic 

Fri

gid 

Perg

elic 

  -- % land area in moisture regime --   -- % land area in moisture regime --   -- % land area in moisture regime --  

1 Atlantic highlands 0 29 59 13 0  0 54 31 15 0  0 88 1 12 0 

2 Central USA plains 0 99 0 1 0  0 10

0 

0 0 0  25 75 0 0 0 

3 Cold Deserts 1 68 26 5 0  4 77 12 6 0  20 76 2 2 0 

4 Everglades 100 0 0 0 0  100 0 0 0 0  100 0 0 0 0 

5 Marine west coast forest 0 97 3 0 0  2 96 1 0 0  7 92 0 0 0 

6 Mediterranean California 95 5 0 0 0  97 3 0 0 0  99 1 0 0 0 

7 Mississippi alluvial and 

Southeast USA coastal plains 

91 9 0 0 0  94 6 0 0 0  99 1 0 0 0 

8 Mixed wood plains 0 59 14 27 0  0 87 2 10 0  0 99 0 1 0 

9 Mixed wood shield 0 5 80 15 0  0 22 39 40 0  0 77 0 23 0 

10 Ozark-Ouachina-Appalachian 

forests 

28 72 0 0 0  48 52 0 0 0  75 25 0 0 0 

11 South cental semiarid prairies 51 49 0 0 0  61 39 0 0 0  77 23 0 0 0 
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12 Southeastern USA plains 75 25 0 0 0  87 13 0 0 0  98 2 0 0 0 

13 Tamailipas-Texas semiarid 

plain 

100 0 0 0 0  100 0 0 0 0  100 0 0 0 0 

14 Temperate prairies 4 61 12 24 0  8 70 2 20 0  23 72 0 5 0 

15 Texas-Louisiana coastal plain 100 0 0 0 0  100 0 0 0 0  100 0 0 0 0 

16 Upper Gila Mountains 18 71 12 0 0  23 75 2 0 0  50 50 0 0 0 

17 Warm Deserts 93 7 0 0 0  97 3 0 0 0  99 1 0 0 0 

18 West-Central semiarid 

prairies 

0 42 14 45 0  0 71 4 24 0  0 98 0 2 0 

19 Western Cordillera 0 16 78 1 4  1 25 72 2 1  3 43 48 6 0 

20 Western Sierra Madre 

piedmont 

91 9 0 0 0  96 4 0 0 0  99 1 0 0 0 
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Figure 2.4. North American Ecoregions from USEPA dataset (USEPA, 2016).  Key to ecoregions: 1 - Atlantic highlands, 2 - Central USA plains, 3 - Cold Deserts, 4 – 

Everglades, 5 - Marine west coast forest, 6 - Mediterranean California, 7 - Mississippi alluvial and Southeast USA coastal plains, 8 - Mixed wood plains, 9 - Mixed wood 

shield, 10 - Ozark-Ouachina-Appalachian forests, 11 - South cental semiarid prairies, 12 - Southeastern USA plains, 13 - Tamailipas-Texas semiarid plain, 14 - Temperate 

prairies, 15 - Texas-Louisiana coastal plain, 16 - Upper Gila Mountains, 17 - Warm Deserts, 18 - West-Central semiarid prairies, 19 - Western Cordillera, 20 - Western 

Sierra Madre piedmont. (Hillshade basemap was derived from SRTM data (Jarvis et al., 2008.) 
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Increasing temperatures during the growing season can be expected to drive 

higher rates of evapotranspiration, leading to greater water deficits in the 2070 

scenarios when compared to the scenarios of current conditions. This accords with 

findings of other researchers (Seneviratne, et al., 2010), and the need to document soil 

change and update soil mapping products in the coming decades. The change from the 

Mesic regime to Thermic and Hyperthermic regimes is the dominant temperature 

regime change predicted in 2070 under the high radiative forcing estimate (Table 2.3). 

Under the lower radiative forcing estimate equal changes from the Frigid to the Mesic 

and from the Mesic to the Thermic/Hyperthermic can be expected (Table 2.3). In both 

scenarios, land changes from the Cryic to Mesic, Cryic to Frigid, and Pergelic to Cryic are 

important. Changes in moisture regime in 2070 under both radiative forcing estimates 

affect Udic regimes changing to Ustic more than other changes, reflecting expected 

drier conditions during the growing seasons. Changes to Aridic regimes from Udic and 

from Ustic are also predicted. 
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Table 2.3. Changes in temperature regimes from current conditions to those in 2070 under low radiative forcing 

and high radiative forcing scenarios 

 

  Climate condition in 2070 

Change to temperature regime  2.6 W m-2 8.5 W m-2 

  -------------  10,000 km2  ------------- 

No change  659 510 

Mesic to Thermic/Hyperthermic  43 122 

Cryic to Mesic  25 90 

Cryic to Frigid  30 18 

Frigid to Mesic  44 61 

Pergelic to Cryic  2 3 

Total fraction of land area changing class  18% 37% 

 

The geographic pattern expected for changes in moisture regime shows far more 

change in the western part of the CONUS, with changes from moist conditions to more 

arid conditions in many cases (Figure 2.5). Some limited areas in the arid Southwest are 

expected to become wetter, particularly under the high radiative forcing estimate when 

some areas are expected to change from Aridic to Xeric or Ustic (Figure 2.5B).  

The geographic changes expected for temperature regimes are perhaps less 

complex and follow broadly latitudinal patterns. The temperature regime fronts for the 

Thermic/Udic, the Mesic/Frigid, and the Frigid/Cryic are expected to proceed northerly 

in latitude in both scenarios. With respect to orography, many mountainous regions are 
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expected to change temperature regime from Pergelic to Cryic or Frigid, from Cryic to 

Frigid or Mesic, and from Frigid to Mesic.
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CHAPTER 3. AN EXPLORATION OF THE APPARENT INFLUENCE OF SOIL CLIMATE ON 
SOIL PROPERTIES IN GEOGRAPHIC ANALYSIS OF THE NATIONAL COOPERATIVE SOIL 

SURVEY LABORATORY CHARACTERIZATION DATABASE 

3.1 Introduction 

Soil climate, the long-term record of seasonal and diurnal patterns of moisture and 

temperature in soil, is considered a driver of soil development and a key soil-forming 

factor influencing the variations in soil properties within soil profiles and over 

geographic spaces (Brady and Weil, 2001; Smith, 1986; Jenny, 1941). Atmospheric 

climate as it influences soil climate determines the strength and nature of flux factors 

that induce physical and chemical changes in soils (Buol et al., 1989). These flux factors 

include evapotranspiration, radiant and atmospheric temperature, winds, precipitation, 

photosynthesis and carbon cycling, and water flow (Buol et al., 1989). The soil can 

further be considered as a system on which energy inputs and outputs play an active 

role in chemical and physical transformations (Runge, 1973; Smeck et al., 1983). These 

energy inputs from climate, or flux factors, can be quantified through observation of the 

climatic record with relevant mathematical models (Rasmussen, 2005).  

Direct influences of climate on soils include precipitation and temperature.  

Precipitation influences soils as moisture constrains plant transpiration and 

photosynthesis and determines water and energy biogeochemical cycles (Seneviratne et 
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al., 2010), increases the amount of the hydrogen ion in soils (Buol et al., 1989), and 

increases clay content through weathering and clay translocation through the soil 

profile (Jenny, 1980; Levine and Ciolkosz, 1983). Precipitation can also influence erosion 

and deposition rates through removals and deposits of surface materials. Finally, 

precipitation can provide direct inputs into the soil system such as deposition of rain-

borne particles, nitrogen, and carbonic acid. Temperature influences plant growth rates 

and subsequent productivity (Rasmussen et al., 2005), it drives evapotranspiration, and 

it increases the rate of chemical reactions important for neoformation of clays, 

transformations of compounds in soils, and decomposition rates of organic matter 

(Brady and Weil, 2001). Seasonal patterns of precipitation and temperature are 

important as they determine niches supportive of particular vegetation and cropping 

regimes and they influence carbon stability. Two geographic areas with the same annual 

precipitation and temperature, for instance, may have widely different vegetation and 

soil carbon content due to temporally different patterns and degrees of fluctuation of 

temperature and moisture throughout the months of the year. 

Classic climosequences are studies of soil variability in which attempts to isolate 

climate as a soil forming factor by selection of sites in which other soil forming factors 

are relatively constant and climate alone is observed to account for variability have 

provided much information about the influence of climate on soil properties (Schaetzl 

and Anderson, 2005). In contrast to the climosequence approach where data are 

carefully selected to minimize the confounding influence of soil forming factors other 

than climate, recent investigations have emphasized the use of new technologies to 
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examine vast datasets at a continental scale to explore the relationships between soil 

properties and climate to include the full range of all soil forming factors along with 

ample data to tease out relevant relationships through large datasets (Scull, 2009). This 

new “top-down” approach requires sufficient and extensive sampling across the entire 

range of soil forming factors to determine the effect of one factor in the face of the full 

range of variability of the others (Scull, 2009). To inform continental scale studies of soil 

and climate with this approach, extensive datasets representing measured soil 

properties and climate are necessary. 

One particularly useful dataset for the top-down approach to studying the 

influence of climate on soil properties is the laboratory data available from the soil 

characterization database of the National Cooperative Soil Survey (NCSS, 2015). The 

database contains detailed geographic, pedometric, classification, and laboratory data 

for 48,586 pedons within the geographical boundaries of the conterminous states of the 

US (CONUS) and more pedons outside this area. Each pedon has been characterized 

with standard laboratory testing at samples representing each named horizon down to 

various depths. The data on these pedons have been collected over decades of research 

representing soil observations on hundreds of millions of acres of land by the US 

National Cooperative Soil Survey (NCSS, 2015). 

Another important dataset is the detailed record of atmospheric climate of the 

CONUS available from the PRISM Climate Group (PRISM, 2015). We used the monthly 

precipitation and temperature estimates for the years 1971 – 2000 to give a picture of 

the long-term climate. In this dataset the CONUS is divided into a grid with 
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approximately 12 million pixels, each representing a geographic unit of ½ arc minute of 

degree. Each georeferenced grid cell is assigned an average monthly temperature and 

precipitation value for the period of interest using the Parameter Regression on 

Independent Slopes model (PRISM, 2015). 

Models have been used to simulate soil moisture and temperature patterns for 

given sets of atmospheric climate data throughout the history of the NCSS, but more 

validation and verification of the model outputs is needed (Smith, 1986). A recent 

advance has been the use of the Newhall Simulation Model (NSM), the most dominant 

soil climate model used by the NCSS, on georeferenced grid cells representing 

continuous coverage of climate observations at regularly spaced intervals across the 

CONUS (Winzeler et al., 2013). This has allowed for simulations of soil climate change in 

response to radiative forcing scenarios released by the Intergovernmental Panel on 

Climate Change (IPCC, 2014).  

Attempting to evaluate the usefulness of model output of the NSM using direct 

measurements of soil moisture and temperature over very short episodes of geologic 

time may not lend sufficient perspective relevant to pedogenesis due to the short-term 

nature of the observations. In this paper we propose to use soil variables themselves as 

indicators of long-term climate influences. Several soil properties are influenced by 

climate. By examining the relationships between these soil properties and the climate 

variables as given by atmospheric climate records, soil climate simulations, and 

estimates of net primary productivity derived from atmospheric climate, we seek to 

examine the utility of output from the NSM.  
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Relevant indicators of the signature of climate on the soil used in this study are 

soil pH, clay, carbon, and cation exchange capacity. Soil pH at a depth of 50 cm in the 

soil profile, we believe, is deep enough to dampen some of the effects of anthropic 

surface treatments such as lime and other soil amendments, but shallow enough to be 

fully in the solum and susceptible to the chronic influence of climate. The clay 

accumulation index (CAI) designed to quantify the degree of argillic horizon 

development in the B horizon is one indicator of the extent and intensity of climate’s 

influence on pedogenesis (Levine and Ciolkosz, 1983). Likewise the observation of the 

maximum clay percentage within the pedon to a depth of 2 m may relate to weathering 

of primary and secondary minerals as well as neoformation of clays relevant to the 

activity of local conditions of soil climate. Soil carbon and CEC are both influenced by 

climate through its influence on plant production rates of biomass and microbial 

decomposition rates. Many other factors such as land management, topography, and 

parent material play a role in soil carbon dynamics and may confound any simple causal 

relationships. 

We examine soil properties with depth in this study because some soil 

properties with depth are expected to be more relevant to soil variability as influenced 

by climate than the properties found on the surface alone. Soils are more easily 

modified at the surface by tillage, vegetation, liming, or other local influences and more 

profoundly influenced over time at greater depth by chronic influences such as climate. 

Some soil properties are best looked at with respect to losses from surface horizons and 

accumulations at deeper horizons, so looking at changes in properties with depth 
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accomplishes two things. First, it normalizes the effects of disparate parent materials as 

accumulations and losses in the profile are expressed relative to amounts initially 

present in the unmodified parent material. Second, it shows the influence of climate 

drivers as they facilitate horizonation, or change in soil properties with depth.  

The Newhall Simulation Model is a convenient tool for examining soil variability 

with respect to climate variability. It is used to integrate atmospheric climate data into 

simulations of soil climate using a monthly time step. More detailed descriptions of the 

model can be found elsewhere (Van Wambeke, 1986; Winzeler et al., 2013). The NSM is 

considered a mesoscale model. Because NSM assumes precipitation excess exits the soil 

as runoff or as deep percolation, resulting soil moisture estimates are valid for well-

drained soils associated with relatively level landscapes. The model lacks a 

runoff/ponding subroutine and functions on a calendar year rather than hydrological 

year with no carryover from the previous year. It does not account for snowmelt and 

also lacks a mechanism for accounting for antecedent moisture conditions. In spite of 

these limitations, it is widely believed that in most cases the NSM provides a reasonable 

approximation of soil moisture (number of days moist, days dry) and temperature 

(number of days <5oC to >8oC) on a monthly time-step. NSM does not require intensive, 

serially complete daily weather data, but rather monthly summary data of atmospheric 

precipitation and air temperature. Such input data are readily available for remote areas 

of the U.S. and many parts of the world, and is useful on raster datasets with complete 

grid-cell coverage of geographic areas. By contrast, field scale models are often more 

computationally complex and generally require additional measurements of wind 
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speed, solar radiation, relative humidity, cropping, and other parameters in their 

evapotranspiration subroutines that are not easily acquired across broad geographic 

regions or remote mountainous landscape settings, and over long-term temporal 

records (Costantini et al., 2002; Williams et al., 1989). The NSM generates a mesoscale 

approximation of soil climate that is applicable to soil survey and taxonomic 

classification (Smith, 1986). The NSM has been used in the U.S. and internationally in 

studies of soil taxonomy, soil mapping, responses of crops to weather, and yield 

predictions (Bonfante et al., 2011; Emadi et al., 2016; Van Wambeke, 1982; Jeutong et 

al., 2000; Yamoah et al., 2003; Costantini et al., 2002; Waltman et al., 2011). 

The NSM was recently updated to Java version 1.6.0, allowing for greater cross-

platform versatility of the model (Waltman, 2012). The Grid Element Newhall (GEN) 

methodology was then developed to make allow for updates to soil climate maps 

coincident with updated and newly available atmospheric climate datasets (Winzeler et 

al., 2013). GEN represents a continuous coverage pixel-by-pixel application of NSM for 

continental-scale rasters of soil climate. The GEN methodology is used in this study to 

obtain soil climate estimates and to assess their relevance in the prediction of soil 

properties within ordinary least squares and geographically weighted regression 

models.  

The NSM is largely untested with respect to how well the outputs of the model 

relate to actual soil variability observed over geographic space in widely different 

geologic regimes of different parent materials. In this paper we test the outputs of the 

NSM according to their correspondence to soil properties known to vary with climate, 
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and relative to each other with respect to information redundancy and collinearity. It is 

important to note that testing the relationship between today’s climate and today’s soil 

properties necessarily ignores the influence of paleoclimate, which in some cases may 

be significant. Climates are not constant over pedogenic time, and some soil properties 

may show influences of paleoclimates that are not accounted for in the record of 

current climate. Nevertheless, in most cases the current climate has profound influence 

on pedogenic processes such that the signature of current climate can be traced in the 

soil properties observed. In addition, datasets of paleoclimate lack the degree of spatial 

and temporal resolution necessary for NSM model runs and are not easily 

commensurate to contemporary climate models. 

Other model variables representing soil forming factors other than climate were 

used in this study to eliminate as many confounding effects as possible. These included 

variables useful for integrating atmospheric climate data to provide energy estimates 

and estimates of primary plant productivity, and models accounting for the local 

influence of terrain on soils. The energy estimates and primary productivity estimates 

were those developed by Rasmussen in his energy accounting approach to quantitative 

pedogenesis (Rasmussen, 2005). The three terrain variables chosen were determined in 

other studies to be sufficient for creating a geometric signature needed to accurately 

classify terrain-unit maps within an automatic terrain classification system (Iwahashi and 

Pike, 2007). We used the three terrain variables recommended by Iwahashi and Pike to 

increase the efficiency of our analysis and most fully account for the effects of terrain 

with the minimum number of variables. By removing effects of terrain, plant 
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productivity, and energy inputs in the regression models, the effects of soil climate on 

soil properties were clarified and confounding influences were minimized. 

The hypothesis for this study is three fold. First, we test whether the influence of 

climate on soils can be observed by noting changes in soil properties over geographic 

space coincident with changes in atmospheric climate over the same geographic space. 

Second, we gauge the validity of the NSM by observing its ability to provide reasonable 

predictor variables in a multiple linear regression approach used to model soil 

properties as influenced by climate. Finally, we gauge the strength of the NSM by 

comparing its ability to provide reasonable predictor variables for strong regression 

models relating NSM output to soil variables across geographic space to a climate 

predictor model (CLIM) that uses only atmospheric climate inputs and no moisture and 

temperature simulations over time.  

3.2 Methods and Materials 

To test the validity and strength of the NSM as a predictive tool for explaining soil 

variability across geographic space relative to an observational climate predictor, we 

obtained data from disparate sources and integrated them into a single GIS database. 

Data from PRISM provided atmospheric climate estimates of precipitation and 

temperature in a monthly time step from 1970 – 2000 (PRISM, 2015). Data from the 

shuttle radar topography mission provided elevation estimates needed for terrain 

analysis (Jarvis et al., 2008).  Shape files representing the physiographic divisions of soil 

and land use areas, the Major Land Resource Areas (MLRAs), were obtained from the 

USDA (USDA, 2006). The database containing soil laboratory data and pedon 
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descriptions was downloaded from the National Cooperative Soil Survey (NCSS, 2015). 

The database contains 48,586 pedons within the geographical boundaries of this study, 

each analyzed for physical and chemical characteristics at multiple depths according to 

soil horizon delineations. One potential limitation of this database includes lack of 

transparency about the choices made regarding soil observations. In most cases it is 

unclear, for instance, if a detailed soil observation was undertaken to characterize an 

area, provide a contrasting soil from more typical soil samples for an area, to satisfy 

technical criteria, or for any other reason. As such, treating the database as a mine of 

random observations may introduce unknown biases. Nevertheless, the database is 

uniquely powerful in terms of the extent of the information available, the detailed 

information for each pedon, its combination of pedological observations and laboratory 

measurements, and for its overall comprehensive and cohesive characteristics.  

For this study Entisols were excluded as they are by definition made up of 

unaltered parent material below the A horizon; as such they do not reflect a climatic 

signature with depth in the soil. Histosols were excluded as well, as they do not reflect a 

climatic signature on a mineral matrix, but rather are made of a build-up of organic 

material often within a closed-depression context; they are different enough from 

mineral soils that their inclusion in the models would represent a confounding of some 

of the relationships sought. Only pedons within the CONUS boundaries, with sufficient 

depth for all analyses, populated data for the response variables, and developed in non-

contrasting parent materials without obvious lithologic discontinuities were chosen for 

inclusion in this study (Figure 3.1).  
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Figure 3.1. Point locations with sufficient data for analyzing pH at 50 cm depth, 

approximately 22,000 pedons. 
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Variables analyzed included soil pH at 50 cm depth, the soil clay accumulation 

index (CAI), soil clay estimate (kg m-2 to a depth of 2 m), soil carbon in the upper 25 cm 

and upper 200 cm (kg m-2), clay maximum (percentage of the mineral fraction by dry 

weight in the upper 2 m), and cumulative cation exchange capacity (NH4OAc extraction 

in the upper 50 cm, 100 cm and 150cm, expressed in mol m-2).  The soil CAI represents 

the degree of argillic horizon development and is calculated with the formula 

�[(𝐵𝐵𝑐𝑐  −𝐶𝐶𝑐𝑐) × (𝑇𝑇)] 

where Bc is the percentage clay by weight of the mineral fraction < 2mm of the soil in 

the B horizon(s), Cc is the percentage clay by weight of the mineral fraction < 2mm of 

the C horizons, and T is the thickness in cm of the B horizons (Levine and Ciolkosz, 1983). 

Where the CAI is less than 0 it was assumed that a lithologic discontinuity between 

parent materials of the B and C horizons accounted for the difference. Pedons with 

reported lithologic discontinuities or with negative CAI values were eliminated from the 

analysis of CAI.  

The NSM was run for each grid cell of the CONUS using the input data described 

in Winzeler et al. (2013). Output from the NSM includes soil climate classes and the 

following variables. 

• Bio5drycum – the cumulative number of days in the year that the soil moisture 

control section (SMCS) is simulated to be warmer than 5°C and fully dry (1500 

kPa, or greater, of moisture retention) 
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• Bio5mdcum – the cumulative number of days in the year that the SMCS is 

simulated to be warmer than 5°C and partially dry and partially moist 

• Bio5mstcum – the cumulative number of days in the year that the SMCS is 

simulated to be warmer than 5°C and fully moist 

• Bio8mstcon – the consecutive number of days in the year that the SMCS is 

simulated to be warmer than 8°C and fully moist 

• Smrdrycons – the consecutive number of days in the summer that the SMCS is 

simulated to be fully dry 

• Wtrmscns– the consecutive number of days in the winter that the SMCS is 

simulated to be fully moist 

• Yrdrycum – the cumulative number of days in the year that the SMCS is 

simulated to be fully dry 

• Yrmdcum – the cumulative number of days in the year that the SMCS is 

simulated to be partially moist and partially dry 

• Yrmstcons – the consecutive number of days in the year that the SMCS is 

simulated to be fully moist 

• Yrmstcum – the cumulative number of days in the year that the SMCS is 

simulated to be fully moist 

Rasmussen’s energy estimates were processed using the PRISM data to 

determine energy input into the soil system and to estimate net primary production of 

vegetation (Rasmussen et al., 2005). These included the following variables. 
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• ∑Eppti = (c)(Peffi)(MATi), where i is the month of Peff (the amount of precipitation 

greater than potential evapotranspiration), c is the specific heat of water, Peff is 

the mass of water and MAT is the change in temperature from 0°C to the mean 

monthly air temperature; 12 monthly estimates are summed to give an annual 

total (Rasmussen et al., 2005) 

• NPPi = {3000/[1 + e (1.315 – 0.119)(MATi)]} (daysi/365 d yr-1), with the NPP variable 

representing the amount of plant production during the year (Rasmussen et al., 

2005) 

For all models three terrain variables were used. These were slope, curvature, 

and surface roughness (Iwahashi and Pike, 2007). They were calculated from SRTM data 

at 1 km resolution (Jarvis et al., 2008.) 

The experimental unit used for all regression models was the Major Land 

Resource Areas, 226 total units for the CONUS. Each MLRA represents a unit of similarity 

with respect to soils, land use, and physiography (USDA, 2006). These were chosen 

because the underlying data structure of the individual pedons examined precluded the 

use of un-aggregated data due to the high degree of spatial autocorrelation and 

clustering among observations. MLRAs are large enough to accommodate large bodies 

of available pedons, but small enough to represent unique geographic zones of 

similarity. To avoid unrealistic values, if the MLRA had fewer than 4 soil observations it 

was omitted from regression models. All explanatory variables within each MLRA were 
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also averaged to obtain a representative value for each variable. These average values 

were then used in the regression models.  

NSM and terrain variables were used in ordinary least squares and 

geographically weighted regressions to explain variability of soil properties related to 

soil climate (NSM model). The complete model run included all variables. Many of these 

variables are correlated, leading to multicollinearity problems in the models. To remove 

multicollinearity, each model was run in a stepwise progression after removing any term 

with a variance inflation factor >7.5 (ArcGIS, 2015). After variance inflation was 

eliminated, terms with p-values > 0.05 were removed in the same stepwise manner. 

Final models were checked with Akaike’s Information Criterion (AIC) to determine 

strongest models. The multiple R2 value was reported for the final model (ArcGIS, 2015). 

To assess the relative worth of the NSM a non-process model (CLIM model) was 

developed and used to create similar regression models for comparison. For this model, 

atmospheric climate, Rasmussen energy and NPP estimates, and terrain variables were 

used to create ordinary least squares and geographically weighted regressions to 

explain variability of soil properties related to climate in the same way as the NSM 

model. This CLIM model uses annual averages of climatic variables without any 

simulation of how these variables might influence seasonal fluctuations of soil moisture 

and temperature. It is believed that this CLIM model will provide a useful contrast to the 

simulations provided by the NSM. The comparison between the CLIM and the NSM thus 

represents the marginal value of including detailed pedon-based simulation of soil 

moisture and temperature with terms accounting for seasonal fluctuations. If the NSM 
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performs better than the CLIM model, it can be assumed that detailed simulation is 

worthwhile. If it does not improve upon the CLIM model, then this suggests that the 

NSM model might be overly complicated and inefficient. The performance of CLIM and 

NSM regression models were compared by assessing differences in R2 and AIC. 

Significant model terms were reported for each model set. 

Geographically weighted regression (GWR) was used in models displaying a high 

degree of possible nonstationarity, indicated by a significant Jarque-Bera statistic (Scull, 

2009; Miller et al., 2007). In most cases the GWR model performed only slightly better 

than the OLS model as it allowed regression coefficients to vary locally, based on greater 

weighting of neighboring data regions. The improvement may not be enough to warrant 

separate regression models for each region in all cases, as the satisfaction of the 

stationarity assumption leads to more universally applicable models. The two strongest 

models, those for soil pH at 50 cm depth and the soil accumulation index, were only 

marginally improved with a GWR approach. The OLS models accounted for 76% and 31% 

respectively and the GWR models accounted for 77% and 33% of the variability in the 

NSM models (Table 3.1).  The improvement may not be enough to justify the use of 

GWR, which is a more complex regression approach as it gives separate linear 

coefficients for each spatial unit.  
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Table 3.1. Tabular output for regression models explaining soil variability by Newhall Simulation Model variables. Goodness of fit is reported with the adjusted R2 

statistic for both ordinary least squares (OLS) and geographically weighted regression (GWR) models. Values for predictor variables are reported p-values in the final 

model. 

NSM Models    Predictor variables used in the best models and their significance* 

Response Variable OLS 

Adj. 

R2 

GWR 

Adj. 

R2 

 *

* 

Yrm

stco

ns 

 Yrm

dcu

m 

 Yrdr

ycu

m 

 Wtr

msc

ns 

 Smrd

ryco

ns 

 Bio8

mstc

on 

 Bio5

mstc

um 

 Bio5

mdc

um 

 Bio5

dryc

um 

 Sl

op

e 

 Rou

ghn

ess 

Soil pH at 50 cm 0.76 0.77    + 0.0

00 

  + 0.00

0 

    - 0.00

0 

  + 0.00

0 

- 0.

00

0 

- 0.01

1 

Soil Clay Accum Index 

(200 cm) 

0.31 0.33  - 0.00

0 

+ 0.0

00 

  + 0.00

2 

    + 0.00

0 

    - 0.

01

6 

  

Soil Clay KG 2 m x 1 m x 

1 m (includes shallower 

pedons) 

0.27 0.35              + 0.00

0 

+ 0.00

0 

  - 0.

00

0 

  

Soil C upper 25 cm 0.23 0.41      - 0.0

00 

    - 0.01

4 

      + 0.

00

0 
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Soil Clay Max Single PM 

(200 cm) 

0.22 0.33    + 0.0

00 

        + 0.00

0 

    - 0.

00

0 

+ 0.00

8 

Cumulative pedon CEC, 

upper 100 cm, NH4 

extraction 

0.18 0.22    + 0.0

00 

  + 0.00

0 

+ 0.01

4 

            

Soil C upper 200 cm 0.18 0.18    + 0.0

63 

    - 0.00

0 

- 0.00

0 

        - 0.00

6 

Cumulative pedon CEC, 

upper 150 cm, NH4 

extraction 

0.16 0.17    + 0.0

00 

  + 0.00

0 

+ 0.06

4 

            

Cumulative pedon CEC, 

upper 50 cm, NH4 

extraction 

0.16 0.21    + 0.0

00 

  + 0.00

0 

+ 0.01

3 

            

*Curvature and Yrmstcum variables not significant and not included in any model 

** Sign to the left of predictor variable indicates direction of influence for the predictor variable. 
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Regression-driven visualizations were developed for visual assessment for 

successful models, in which variance inflation has been removed, the adjusted R2 

accounts for a good proportion of the variability (>0.30), all terms are significant (p < 

0.05), and the AIC is observed to be lowest for the suite of variables used. 

3.3 Results 

In general, NSM models were stronger and more complex than CLIM models, 

with more predictor variables and higher goodness of fit. Ordinary least squares 

regression results ranged in goodness of fit from 0.16 to 0.76 for models with the NSM 

terms and from 0.08 to 0.73 for the CLIM models (Tables 3.1 and 3.2). In general, the 

NSM models explained slightly more of the variability of the response variables than the 

CLIM models. 
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Table 3.2. Tabular output for regression models explaining soil variability by naïve climate predictor (CLIM) model variables. Goodness of fit is reported with the adjusted 

R2 statistic for both ordinary least squares (OLS) and geographically weighted regression (GWR) models. Values for predictor variables are reported p-values in the final 

model. 

CLIM Models     Predictor variables used in the best models and their significance* (p-values) 

Response Variable OLS 

Adj. 

R2 

GWR Adj. 

R2 

 ** Mean Annual 

Air  

Temperature 

 Mean 

Annual  

Precipitati

on 

 Slop

e 

 Roughne

ss 

 Annu

al  

Eppt 

 Annu

al 

NPP 

Soil pH at 50 cm 0.73 0.82  + 0.000 - 0.000   - 0.000   - 0.016 

Soil Clay Accum Index (200 cm) 0.28 0.31  + 0.000 - 0.000       + 0.018 

Soil Clay KG 2 m x 1 m x 1 m (includes 

shallower pedons) 

0.25 0.35  + 0.000   - 0.00

0 

  - 0.005 + 0.000 

Soil C upper 25 cm 0.35 0.45  - 0.000 + 0.003 + 0.06

8 

    - 0.000 

Soil Clay Max Single PM (200 cm) 0.20 0.32  + 0.001 - 0.000 - 0.02

3 

+ 0.003 + 0.000   

Cumulative pedon CEC, upper 100 cm, 

NH4 extraction 

0.12 0.28  + 0.000       - 0.000 + 0.001 

Soil C upper 200 cm 0.16 0.16        - 0.017   - 0.001 
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Cumulative pedon CEC, upper 150 cm, 

NH4 extraction 

0.08 0.25  + 0.001       - 0.000 + 0.001 

Cumulative pedon CEC, upper 50 cm, NH4 

extraction 

0.10 0.28  + 0.005       - 0.000 + 0.009 

*Curvature not significant 

** Sign to the left of predictor variable indicates direction of influence for the predictor variable. 

 

Table 3.3. Regression equations used to create regression-based visualization figures. AIC values (lower is better) indicate model quality. R2 values indicate model 

goodness of fit. 

Model terms and Response variable AIC OLS 

Adj. R2 

Equation 

NSM: Soil pH at 50 cm 366 0.76 6.27 - 0.0520 Slope - 1.24 Roughness + 0.00566 Bio5drycum - 0.00585 Bio5mstcum + 0.0118 

Wtrmscns + 0.00998 Yrmdcum 

CLIM: Soil pH at 50 cm 391 0.73 8.68 - 0.00187 Precipitation + 0.0320 Temperature - 1.40 Roughness - 0.000334 NPP 

NSM: CAI 207

3 

0.31 260 - 6.12 Slope + 1.81 Bio5mstcum + 2.95 Wtrmscns + 2.34 Yrmdcum - 1.94 Yrmstcons 

CLIM: CAI 207

8 

0.28 159 - 0.137 Precipitation + 19.2 Temperature + 0.0734 NPP 
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NSM: 25 cm cumulative carbon (kg m-2) 108

0 

0.27 11.7 + 0.529 Slope - 7.15 Roughness - 0.0150 Bio8mstcon - 0.0319 Yrdrycum 

CLIM: 25 cm cumulative carbon (kg m-2) 104

7 

0.35 7.57 + 0.00982 Precipitation - 0.266 Temperature + 0.151 Slope - 0.00393 NPP 
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Multicollinearity was a serious concern with both sets of models, but especially 

with NSM models. Final models for NSM included between 23 – 46% of the initial 

variables, the majority of them having been removed due to multicollinearity and non-

significance (Table 3.1). Final models for CLIM were more efficient, with between 29 – 

71% of the initial variables used in the final models, with a smaller fraction of the initial 

terms removed due to multicollinearity and non-significance (Table 3.2). The CLIM 

models were therefore more efficient, with fewer redundant terms.  

The terms in the most NSM models and with the greatest significance were 

Yrmdcum, Wtrmscons, Smrdrycons, and Bio5mstcum. The direction of influence with 

the term Yrmdcum was positive in all cases, indicating that the cumulative number of 

days the SMCS is partially moist and partially dry in the year leads to an increase in pH at 

50 cm depth, greater clay accumulation, greater soil clay maximum in the upper 200 cm, 

greater cumulative pedon CEC in the upper 100 cm and upper 150 cm and upper 50 cm, 

and greater soil carbon in the upper 200 cm (Table 3.1). This accords with expectations 

regarding soil carbon stability in soils that are moist enough to support plant growth, 

but dry enough to restrict microbial breakdown of carbon at least during parts of the 

year. Likewise, for clay accumulation, it is expected that periods of moisture followed by 

periods of dryness are important for mobilizing clay movement in a downward direction 

(lessivage) during the development of argillic horizons. CEC is dominated by organic 

matter and clays, so it is expected that it should show similar patterns to both carbon 

and clay. 
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For the CLIM models, the most effective predictor variable was annual air 

temperature, with positive influence on soil pH, soil clay accumulation index, soil clay, 

soil CEC at three depths, but with a negative influence on soil carbon in the upper 25 cm 

(Table 3.2). Annual net primary productivity was also highly significant in all models but 

one. Greater NPP resulted in lower pH, lower soil carbon in the upper 25 cm and 200 

cm, and in increased soil clay accumulation, soil clay, and cumulative CEC. 

In OLS regressions, CLIM models accounted for less variability than NSM models 

for all models except the one made for soil carbon in the upper 25 cm (Tables 3.1 and 

3.2). The model for soil carbon in the upper 25 cm was highly influenced by atmospheric 

temperature, probably reflecting the dominant influence of temperature on soil carbon 

metabolism rates by microorganisms, particularly at shallow depths where atmospheric 

temperature fluctuations have greater influence than at deeper zones. For all other 

models, NSM explained more soil variability than CLIM. This implies that simulation of 

the activity of soil moisture and temperature in the soil profile over a monthly time step 

can enrich understanding of the aspects of soil climate that influence measured soil 

properties.  

The only OLS models with R2 > 0.30 were soil pH at 50 cm, CAI, and C in the 

upper 25 cm (only for the CLIM model) (Figures 3.2 -3.7). NSM output regression models 

had lower AIC values than those for the CLIM models for most models, indicating better 

model quality and implying that the NSM has useful variables that are not present in the 

simpler climate model CLIM (Table 3.3).
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 Figure 3.2. Regression output visualization for pH at depth 50 cm with NSM 

predictor variables. 
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Figure 3.3. Regression output visualization for pH at depth 50 cm with CLIM predictor 

variables. 
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Figure 3.4. Regression output visualization for clay accumulation index (CAI) with NSM 

predictor variables. 
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Figure 3.5. Regression output visualization for clay accumulation index (CAI) with CLIM 

predictor variables. 
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Figure 3.6. Regression output visualization for 25 cm depth carbon content (kg m-2) with 

CLIM predictor variables. 
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Figure 3.7. Regression output visualization for 25 cm depth carbon content (kg 

m-2) with NSM predictor variables. 
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3.4 Discussion 

While the NSM provides an integration of atmospheric climate variables and can 

provide estimates of a soil’s wetting/drying cycles and temperature fluctuations, much 

of the output variables from the model are highly correlated, limiting their usefulness in 

regression models. With careful removal of terms, however, some of this 

multicollinearity can be controlled. When correlated variables are removed the NSM’s 

performance as a predictive tool shows some strength and its terms generally improve 

upon model performance from regressions involving atmospheric climate predictor 

variables alone (CLIM model). Removal of redundant terms in the NSM makes the model 

more efficient and strengthens its performance as a predictive tool. The CLIM model 

also performed well and provided an efficient set of predictor variables for exploring soil 

variability related to climate. Its terms were more efficient, but had slightly less power 

than those from NSM (Table 3.3). 

The NCSS database used in this project was not populated with samples that 

were specifically chosen for the needs of the paper. Nor is it known whether the 

sampling was done in a random fashion, or using other sampling techniques. As such, 

unknown biases may be included in the sample set. Some MLRA regions are well 

represented with many, seemingly randomly chosen samples, while some MLRAs are 

poorly represented with sparse samples that may have been taken for specific reasons 

not germane to the kind of data characterization that would have been best for this 

project. Limitations in the input data may be made up for by data extensiveness, 

particularly for data of the pH at 50 cm depth, giving good average representations of 
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geographic variability. Observations of other variables, however, may have been too 

sparsely taken or may include unknown biases. Conclusions about relationships 

between climate variables and soil properties should be treated with some amount of 

caution.  

Soil pH at a depth of 50 cm was shown to be positively correlated to climate 

variables related to weathering intensity. Increased rainfall and temperature lead to 

decreased soil pH through well-known pedogenic processes (Buol et al., 1989). Leaching 

of carbonates and bases from the soil profile occurs in climates where precipitation 

exceeds evapotranspiration. Exchangeable aluminum and hydrogen dominate very low 

pH soils as they are less soluble than bases, while free calcium and sodium may 

dominate soils with very high pH in conditions marked by high evapotranspiration. In 

conditions when rainfall exceeds evapotranspiration, calcium and sodium ions can be 

removed from the soil and replaced by exchange acidity. The dissolution of carbonic 

acid in soil water decreases soil pH and can result from respiration of microorganisms in 

processes influenced by soil moisture and temperature (Brady and Weil, 2001). In arid 

regions accumulation of soluble salts in the soil solution contributes to high pH values. 

Other processes influencing soil pH related to soil climate include the accumulation of 

organic matter, acids from biological metabolism, oxidation of nitrogen and sulfur, and 

plant uptake of cations (Brady and Weil, 2001). These processes all tend to promote 

greater acidity when rainfall and temperature levels support sufficient plant growth and 

microbial processes.  
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Clay content of soils is influenced by weathering of primary minerals to 

progressively smaller particle sizes, by conditions favoring neoformation of clays, and by 

underlying parent material in which the soil develops. Climate influences clay through 

the degree of weathering and the degree of lessivage driven primarily by precipitation, 

and through temperature by driving chemical transformations. Increased soil moisture 

generally leads to greater degrees of weathering of primary minerals, greater 

translocation of clays to deeper horizons, and to conditions more favorable to 

neoformation of clays. Higher temperatures with adequate rainfall promote greater 

degrees of chemical transformation of clays on a continuum from more smectitic to 

more kaolinitic (Brady and Weil, 2001). 

The cation exchange capacity of most soils increases with pH because higher pH 

is associated with higher amounts of salts, higher base saturation, and higher levels of 

exchangeable bases (Brady and Weil, 2001). As soils weather, particularly under the 

influence of high rainfall and high temperature, CEC decreases as several processes take 

hold. Clay mineralogy changes from the smectitic to the more kaolinitic spectrum as 

positive ions are removed from the soil. Soil organic matter, a major contributor to soil 

CEC, may be degraded by microbial respiration under conditions of high temperature 

and moisture. Working independently and confounding expectations with respect to the 

influence of climate in these processes is the influence of underlying parent material. 

The models in this paper are insufficient to explain the influence of soil climate on CEC 

due, in part, to the influence of other soil forming factors not accounted for in the 

models such as parent material, geologic age, human management, or organisms. 
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Another variable that was insufficiently explained by the CLIM and the NSM 

models was soil C. Soil C is influenced by climate through weathering of carbon-

containing primary minerals, through the climate’s influence on net primary 

productivity, soil C decomposition, and through soil organic C dynamics. Soil organic C 

mineralization and decomposition follow temperature and moisture conditions and are 

governed by the stability of organic matter, the availability of substrate, the physiology 

of soil microflora, and physiochemical controls such as pH and the availability of oxygen, 

moisture and other conditions (Lützow and Kögel-Knabner, 2009).  

The degree to which soil properties are influenced by climate has been observed 

for some time (Jenny, 1941). Testing the relationships between soils and climate with 

continental-scale datasets is a new task that shows some promise and can refine and 

develop the fundamental understandings (Scull, 2009). We have shown in this paper 

that a top-down approach, as recommended by Scull, that accounts for soil variability 

with depth in the profile may provide a particularly rich environment for further study. 

The influence of climate can be traced in the soil properties observed at a continental 

scale using the NSM. As it offers pertinent variables that relate to weathering effects in 

soils the NSM model is a useful tool for exploring continental-scale soil variability as 

influenced by long-term climate.  
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