47 research outputs found

    Functional dynamics of retinal proteins

    Get PDF
    Ziel der vorliegenden Dissertation war es, die Dynamik des Retinalchromophors in archaealen, bakteriellen sowie eukaryotischen Retinalproteinen zeitaufgelöst zu untersuchen und so Informationen über die unterschiedlichen lichtgesteuerten zyklischen Reaktionen zu erhalten. Für das bakterielle Proteorhodopsin (PR) wurde die Primärdynamik im sichtbaren Spektralbereich unter D2O-Bedingungen bei unterschiedlichen pD-Werten untersucht. Es zeigte sich, dass das isomerisierte K-Photoprodukt mit zwei Zeitkonstanten im Bereich von 1 ps und 20 ps gebildet wird. Der Vergleich mit Messungen in H2O erlaubte es den kinetischen Isotopeneffekt für die Deaktivierung des S1-Zustandes zu berechnen. Die Ergebnisse weisen dabei auf unterschiedliche Wasserstoffbrückenmuster unter sauren und alkalischen Bedingungen hin. Um diesem Resultat weiter nachzugehen, wurde die D97N-Mutante untersucht, bei der der primäre Protonenakzeptors ungeladen vorliegt. Die gefundene Primärdynamik von PR D97N läuft nur unwesentlich langsamer ab als die des Wildtyp-Proteins bei pD 6,4. Um weitergehende Einsichten in die Primärdynamik von PR zu erlangen, wurden am Wildtyp-Protein sowie der D97N-Mutante transiente Absorptionsmessungen im Bereich der C=C- und C=N-Schwingung des Retinals durchgeführt. Es stellte sich heraus, dass die Quantenausbeute der K-Bildung unabhängig vom pD-Wert ist. In einem weiteren Schritt wurde der Einfluss des hochkonservierten His-75 auf die Isomerisierungsdynamik untersucht. Hierfür wurden die Mutanten H75N und H75M verwendet. Die Kurzzeitmessungen lassen keinen ausgeprägten Einfluss auf die Isomerisierungsdynamik erkennen. Auch der nachfolgende Teil des Photozyklus war im Blickpunkt dieser Arbeit. Die Tieftemperaturstudien im sichtbaren Spektralbereich erlaubten das in kinetischen Messungen nicht beobachtete M-Intermediat des sauren Photozyklus nachzuweisen. Um strukturelle Einblicke in den Photozyklus zu erlangen und die am Pumpvorgang beteiligten Aminosäuren zu identifizieren, wurden nachfolgend Tieftemperaturuntersuchungen im infraroten Spektralbereich durchgeführt. Die Implementierung eines Faserspektrometers in den Strahlengang des FTIR-Aufbaus erlaubte hierbei die simultane Aufnahme der lichtinduzierten Änderungen der Bandenposition im sichtbaren Spektralbereich und der Änderungen der Proteinstruktur sowie der Seitenketten. Für den M-Zustand bei pH 5,1 konnte gezeigt werden, dass auch hier eine Aspartat- oder Glutamat-Seitenkette als Protonenakzeptor fungiert. Weiterhin konnte dargelegt werden, dass der Photozyklus von PR nicht nur vom pKa-Wert des Protonen-akzeptors Asp-97 abhängt, sondern von einem Zusammenspiel mehrerer pH-abhängiger Gleichgewichte, da schon kleinste Änderungen des pH-Werts im Bereich des pKa großen Einfluss auf die beobachteten Differenzspektren sowie die Dynamik haben. Auch für das in jüngster Vergangenheit zur optogenetischen Kontrolle neuronaler Netze eingesetzte eukaryotische Retinalprotein Channelrhodopsin-2 (ChR-2) wurden umfangreiche Photozyklusstudien durchgeführt. Mit Hilfe von transienter Absorptionsspektroskopie im Sichtbaren sowie der Fluoreszenz-aufkonvertierung konnte gezeigt werden, dass der angeregte Zustand monoexponentiell mit 0,4 ps zerfällt. Die Reaktion setzt sich mit einem Kühlprozess und kleineren Änderungen der Linienbreite des K-Photoprodukts fort. Durch die schnelle Deaktivierung des angeregten Zustands war es zudem möglich die direkten Auswirkungen der Retinalisomerisierung auf die Proteinumgebung zu beobachten. Die Vielzahl ausgeprägter Differenzbanden zeigte hierbei, dass neben der schnellen Isomerisierung auch der Energietransfer der im Retinal gespeicherten Überschussenergie an das Protein sehr effizient ist. Über Blitzlichtphotolyseexperimente konnte die Langzeitdynamik des ChR-2-Photozyklus erstmals mit einer sub-µs-Zeitauflösung charakterisiert werden. Neben der für Retinalproteine typischen Abfolge von blau- und rot-verschobenen Intermediaten, ist der Photozyklus mit einer Dauer von etwa 5 s signifikant langsamer als der gemeinhin schon langsame Zyklus der sensorischen Retinalproteine. Um die Aktivierungs-barrieren des ChR-2-Photozyklus zu untersuchen, wurden weiterhin temperaturabhängige Messungen durchgeführt. Diese ergaben, dass der Photozyklus durch entropische Faktoren bestimmt wird. In einem letzten Ansatzpunkt wurde die Imidazol-Abhängigkeit der Langzeitdynamik des ChR-2-Photozyklus untersucht. Es zeigte sich, dass die Dynamik um die De- und Reprotonierung stark von diesem externen Donor beeinflusst wird. Es wurde jedoch nicht nur eine Beschleunigung der Reprotonierungsreaktion beobachtet, sondern auch der molekulare Mechanismus scheint sich nach Zugabe von Imidazol geändert zu haben. Diese Effekte können am ehesten durch eine Verstärkung des Histidin-Donor-Effekts durch das strukturell verwandte Imidazol erklärt werden. Genau dieser Einfluss externer Donor-Moleküle stand ebenfalls in einer Kurzzeit-Studie archaealer Retinalproteine im Fokus. Vorausgegangene Studien konnten zeigen, dass die Zugabe von Azid-Anionen die Isomerisierungsdynamik sowie den nachfolgenden spektral stillen Übergang der Protonenakzeptor-mutante von SRII D75N beeinflusst. Die vorliegende Arbeit stellte heraus, dass dieser Effekt ein einzigartiges Merkmal dieser Mutante ist. Abschließend wurde überdies die Bedeutung des in der Zelle in 2:2-Stöchiometrie beobachteten Transducerkomplexes auf die Primärreaktion von SRII untersucht. Es zeigte sich, dass dieser keinen Einfluss auf die Isomerisierungsdynamik aufweist, was eine wichtige Information bezüglich der Signalweitergabe sensorischer Retinalproteine ist.The aim of this PhD work was to gain information on the photocycle properties of archaeal, bacterial and eukaryotic retinal proteins by means of time-resolved spectroscopy in the visible and the infrared. For the bacterial proton pump proteorhodopsin (PR) pump-probe-measurements in the visible were performed under D2O conditions. The K photoproduct is formed with two time constants in the range of ~1 ps and ~20 ps. The biphasic excited state deactivation pathway was found to be less dependent on the pD value than on the pH value illustrating noticeable differences in the hydrogen bonding network under both pH conditions. This was further validated by the investigation of the D97N mutant which serves as a model system for PR with protonated Asp-97. The obtained isomerization dynamics closely resembles the one under acidic conditions. To get direct structural insights into the isomerization dynamics ultrafast infrared spectroscopy was performed in the region of the C=C- and C=N-stretching vibration of the chromophore. It could be shown that the quantum yield of the K intermediate formation is independent of the pH-value. In a further step the influence of the highly conserved histidine residue on the isomerization properties was investigated. For this purpose two mutants were studied (H75N and H75M). The primary dynamics is only slightly affected by the mutations. This means that the electrostatic and steric properties as well as the H-bonding network in the vicinity of the retinal Schiff base are not drastically perturbed by the mutation. The subsequent photocycle dynamics was studied by low-temperature spectroscopy. Furthermore, this cryo-trapping approach allowed the observation of the kinetically silent M intermediate at low pH which is essential for the pumping mechanism. To get structural insights into the photocycle reaction and to identify the participating amino acids in the proton translocation pathway low-temperature infrared measurements were performed. The implementation of a fiber spectrometer in the beam path of the FTIR-spectrometer allows the direct comparison of the light induced changes of the visible band position of the chromophore and the alterations in the protein structure as well as side chain protonation changes. At acidic pH it could be shown that another aspartate or glutamate side chain replaces the function of the now protonated Asp-97 as proton acceptor. Furthermore it could be shown that the photocycle is not only determined by the pKa-value of Asp-97, but an interplay of several pH-dependent equilibria, since small pH-changes around the pKa have a high impact on the observed difference bands and their dynamics. Also for the ion channel channelrhodopsin-2 (ChR-2) comprehensive investigations on the photocycle properties were performed. Ultrafast visible absorption and fluorescence spectroscopy reveals that the excited state decays monoexponentially with 400 fs, thereby populating the K photoproduct. The reaction closes with cooling processes (2.7 ps) and slight alterations in the line width of the K state (200 ps). The high resemblance to the dynamics of the archaeal retinal proteins BR and sensory rhodopsin II (SRII) implies that the electrostatic conditions as well as the hydrogen bonding characteristics are very similar for all of these proteins. The primary dynamics should therefore be interpreted within the framework of the well-established BR models. Due to the fast S1-depopulation it was possible to observe the direct effects of the retinal isomerization on the surrounding protein by pump-probe-spectroscopy in the mid-infrared. It could be shown that the excess energy transfer from the retinal to the protein is very efficient. The subsequent photocycle dynamics of ChR-2 was determined by laser flash photolysis. It turned out that the photocycle exhibits the typical BR-like blue and red shifted photointermediates, but is with a turn over rate of 0.2 s-1 significantly longer than the photocycles of the usually slow sensory proteins. To learn about the activation energies of the photocycle temperature dependent measurements were performed. It could be shown that the photocycle is mostly determined by entropic factors. In a last step the influence of imidazole on the long time photocycle dynamics was investigated. It could be shown that imidazole has a strong impact on the de- and reprotonation dynamics of the retinal Schiff base linkage to the protein. Not only an acceleration of the reprotonation dynamics was found, but also a change in the molecular mechanism. An enhancement of the histidine donor moiety by the structurally related imidazole is assumed. The influence of another external donor on the isomerization properties of archaeal retinal proteins was in the focus of a further ultrafast study. Previous measurements could show that the addition of azide accelerates both the isomerization dynamics and a subsequent spectrally silent transition of the proton acceptor mutant of SRII (D75N). This effect was now proven to be a unique feature of the D75N mutant of SRII. The influence of the cognate transducer complex of SRII on the ultrafast isomerization dynamics of the receptor was investigated in a last transient absorption study. No influence on the primary dynamics could be detected, although the transducer is directly hydrogen bonded to the sensory protein in the proximity of the retinal

    Low temperature FTIR spectroscopy provides new insights in the pH-dependent proton pathway of proteorhodopsin

    Get PDF
    AbstractIn the presented study the low pH photocycle of proteorhodopsin is extensively investigated by means of low temperature FTIR spectroscopy. Besides the already well-known characteristics of the all-trans and 13-cis retinal vibrations the 77K difference spectrum at pH 5.1 shows an additional negative signal at 1744cm−1 which is interpreted as indicator for the L state. The subsequent photocycle steps are investigated at temperatures higher than 200K. The combination of visible and FTIR spectroscopy enabled us to observe that the deprotonation of the Schiff base is linked to the protonation of an Asp or Glu side chain — the new proton acceptor under acidic conditions. The difference spectra of the late intermediates are characterized by large amide I changes and two further bands ((−)1751cm−1/(+)1725cm-1) in the spectral region of the Asp/Glu ν(C=O) vibrations. The band position of the negative signature points to a transient deprotonation of Asp-97. In addition, the pH dependence of the acidic photocycle was investigated. The difference spectra at pH 5.5 show distinct differences connected to changes in the protonation state of key residues. Based on our data we propose a three-state model that explains the complex pH dependence of PR

    The Photocycle of Channelrhodopsin-2: Ultrafast Reaction Dynamics and Subsequent Reaction Steps

    No full text
    The photocycle of channelrhodopsin-2 is investigated in a comprehensive study by ultrafast absorption and fluorescence spectroscopy as well as flash photolysis in the visible spectral range. The ultrafast techniques reveal an excited-state decay mechanism analogous to that of the archaeal bacteriorhodopsin and sensory rhodopsin II from Natronomonas pharaonis. After a fast vibrational relaxation of the excited-state population with 150 fs its decay with mainly 400 fs is observed. Hereby, both the initial all-trans retinal ground state and the 13-cis-retinal K photoproduct are populated. The reaction proceeds with a 2.7 ps component assigned to cooling processes. Small spectral shifts are observed on a 200 ps timescale. They are attributed to conformational rearrangements in the retinal binding pocket. The subsequent dynamics progresses with the formation of an M-like intermediate (7 and 120 μs), which decays into red-shifted states within 3 ms. Ground-state recovery including channel closing and reisomerization of the retinal chromophore occurs in a triexponential manner (6 ms, 33 ms, 3.4 s). To learn more about the energy barriers between the different photocycle intermediates, temperature-dependent flash photolysis measurements are performed between 10 and 30°C. The first five time constants decrease with increasing temperature. The calculated thermodynamic parameters indicate that the closing mechanism is controlled by large negative entropy changes. The last time constant is temperature independent, which demonstrates that the photocycle is most likely completed by a series of individual steps recovering the initial structure

    Critical Role of Asp227 in the Photocycle of Proteorhodopsin

    No full text
    The photocycle of the proton acceptor complex mutant D227N of the bacterial retinal protein proteorhodopsin is investigated employing steady state pH-titration experiments in the UV−visible range as well as femtosecond-pump−probe spectroscopy and flash photolysis in the visible spectral range. The evaluation of the pH-dependent spectra showed that the neutralization of the charge at position 227 has a remarkable influence on the ground state properties of the protein. Both the pKa values of the primary proton acceptor and of the Schiff base are considerably decreased. Femtosecond-time-resolved measurements demonstrate that the general S1 deactivation pathway; that is, the K-state formation is preserved in the D227N mutant. However, the pH-dependence of the reaction rate is lost by the substitution of Asp227 with an asparagine. Also no significant kinetic differences are observed upon deuteration. This is explained by the lack of a strongly hydrogen-bonded water in the vicinity of Asp97, Asp227, and the Schiff base or a change in the hydrogen bonding of it (Ikeda et al. (2007) Biochemistry 46, 5365−5373). The flash photolysis measurements prove a considerably elongated photocycle with pronounced pHdependence. Interestingly, at pH 9 the M-state is visible until the end of the reaction cycle, leading to the conclusion that the mutation does not only lower the pKa of the Schiff base in the unphotolyzed ground state but also prevents an efficient reprotonation reactio

    Ultrafast Infrared Spectroscopy on Channelrhodopsin‑2 Reveals Efficient Energy Transfer from the Retinal Chromophore to the Protein

    No full text
    The primary reaction dynamics of channelrhodopsin-2 was investigated using femtosecond vis-pump/mid-IR probe spectroscopy. Due to the fast deactivation of the excited state in channelrhodopsin-2, it is possible to observe the direct impact of retinal isomerization on the protein surrounding. We show that the dominant negative band at 1665 cm−1 tentatively assigned to an amide I vibration is developed with a time constant of 0.5 ps. Also a variety of side-chain vibrations are formed or intensified on this time scale. The comparison of the light-induced FT-IR spectra of channelrhodopsin-2 in H2O and D2O at 80 K enabled us to tentatively identify the contribution of Arg side chain(s). The subsequently observed decay of nearly the whole difference pattern has a particularly high impact on the C=C and C=N stretching vibrations of the retinal. This suggests that the underlying mechanism describes a cooling process in which the excess energy is redirected toward the retinal surrounding, e.g., the protein and functional water molecules. The pronounced protein contributions in comparison to other rhodopsins point to a very efficient energy redistribution in channelrhodopsin-2
    corecore