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SUMMARY 
 
 
 

Epilepsy, a chronic neurological disorder characterized by recurrent, unprovoked 

seizures, affects up to one percent of the world’s population.  Antiepileptic drug therapies are 

ineffective in over 30% of epilepsy patients.  In these cases, the medications either do not 

successfully control seizures or have unacceptable side effects.  Approximately one-third of 

patients whose seizures cannot be controlled by medication are candidates for surgical removal 

of the affected area of the brain, potentially rendering them seizure free.  Accurate localization of 

the epileptogenic focus, i.e. the area of seizure onset, is critical for the best surgical outcome.  

Currently the most widely used tool for localization of the epileptogenic zone is 

electroencephalography.  While the electroencephalogram (EEG) has high temporal resolution, it 

suffers from poor spatial resolution.  Combining EEG recordings with a diagnostic tool 

possessing higher spatial resolution, such as functional magnetic resonance imaging (fMRI), 

might allow for more precise localization of the epileptogenic focus.   The primary objective of 

the proposed research is to develop a set of fMRI data features that can be used to distinguish 

between normal brain tissue and the epileptic focus.  To determine the optimal combination of 

features from various domains, genetic programming will be used.  A classifier will then be 

employed to label brain voxels as either normal or epileptogenic based on this optimal feature.  

The accuracy of these classification results will be assessed by comparing the seizure focus as 

determined by this methodology with the focus determined by neurologists through analysis of 

EEG data from the same patients. 
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SECTION I 
 
 
 
1  Introduction 

1.1  Motivation 
 

Epilepsy, a chronic neurological disorder characterized by recurrent, unprovoked 

seizures, affects approximately 1% of the world’s population [1].  For 30 to 40% of epilepsy 

patients, antiepileptic drugs either cannot effectively control seizures or have intolerable side 

effects [2].  One-third of patients for whom drug therapy is ineffective are candidates for surgical 

treatment [3];  however, only 60 to 80% of patients are currently rendered seizure-free following 

surgery [4].  More accurate localization of the area of seizure onset is clearly needed to increase 

the efficacy of surgery.  Uncontrolled epilepsy can lead to depression, anxiety, and loss of 

cognitive function and is associated with higher healthcare costs [2].  

1.2  Problem Statement 

Accurate focus localization is essential for rendering patients seizure-free following 

epilepsy surgery.  Correct localization is also vital in directing the placement of electrodes for 

implantable devices designed to stop seizure propagation.  Electroencephalogram (EEG) 

recording, the most widely used functional tool for epileptic focus localization, suffers from low 

spatial resolution.  Functional magnetic resonance imaging (fMRI), on the other hand, has much 

higher spatial resolution and can potentially be used in conjunction with EEG for more precise 

localization.   

The primary objective of the proposed research is to develop a voxel-based fMRI time 

series analysis technique for mapping epileptic networks.  A set of quantitative features will be 
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formulated for distinguishing between normal brain tissue and epileptogenic regions.  Features 

will be extracted from the time, frequency, statistical, and mutual information domains, and the 

most useful combination of features for focus localization will be determined through the 

application of genetic programming.  The feasibility of selecting an optimal feature set will be 

tested by examining data from patients with temporal lobe epilepsy (TLE), a common epilepsy 

syndrome, which is often amenable to surgery.  

The central hypothesis for the proposed research is that differences in the temporal 

dynamics of fMRI signals in epileptogenic and normal brain regions can be identified through 

feature analysis of the voxel time series and used to classify brain regions as normal or belonging 

to the epileptic network. 

 

2  Origin and History of the Problem 

2.1 Functional Magnetic Resonance Imaging 

Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging technique 

that measures hemodynamic changes resulting from changes in the level of neuronal activity.  

Through the analysis of fMRI data, which consist of sequences of images acquired over time, the 

spatiotemporal dynamics of brain activation can be explored.  The contrast in these images is 

attributable to differences in tissue function rather than structure.  High-resolution anatomical 

scans enable identification of any structural abnormalities that might be present, while functional 

scans provide useful information about neural activity.  This information is especially helpful in 

the absence of any structural irregularities, which would explain the atypical brain function.  

Slices (two-dimensional cross-sections) of functional and structural MRI scans are shown in 

Figure 1.  The structural image has noticeably higher spatial resolution.  In fMRI, the voxel size 
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is limited by the tradeoff between small voxel dimension and high signal-to-noise ratio (SNR) 

[5]; however, even with this constraint, the spatial resolution of fMRI is still relatively high – on 

the order of a few millimeters.  The temporal resolution of fMRI in human studies is generally in 

the range of one to three seconds per three-dimensional image.  It is constrained by the necessity 

of using relatively low magnetic field strengths for safety purposes.  The higher field strengths 

used in animal studies have resulted in temporal resolutions of 100 milliseconds. 

 
 

         

a b

Figure 1.  Examples of functional (a) and anatomical (b) images. 

 
 

Functional MRI indirectly measures neural activity through detection of changes in blood 

flow, blood volume, and oxygen consumption.  As regional brain function increases, there is a 

corresponding increase in regional cerebral blood flow (CBF).  Blood oxygen level dependent 

(BOLD) fMRI exploits changes in concentrations of oxy- and deoxyhemoglobin that accompany 

changes in neural activity.  The differences in the magnetic properties of these substances 

provide contrast in BOLD images.  Arterial spin labeling (ASL) perfusion fMRI contrast is also a 

reflection of blood flow changes.  During ASL perfusion scans, arterial blood water near the area 

of interest is electromagnetically labeled by a radiofrequency pulse to allow tracking of the CBF.  

Immediately after imaging of the pre-labeled spins, control images without labeled spins are 
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acquired.  Through pairwise subtraction of these label and control pairs, the effects of labeling 

can be determined. 

Table 1, as presented by Detre and Wang in [6], lists several properties of BOLD and 

ASL perfusion fMRI.  BOLD fMRI generally has higher SNR and temporal resolution and larger 

signal changes due to activation than ASL perfusion.  BOLD contrast is also easier to measure, 

so it is the more widely used technique.  Despite the drawbacks mentioned, ASL perfusion 

contrast has characteristics that make it useful as well.  The ASL imaging approach provides 

physiological measures of CBF, while the BOLD technique only provides information about 

relative changes in the blood oxygen.  ASL also has the ability to measure resting function, 

which cannot be easily observed with BOLD contrast. 

 
Table 1:  Comparison of the properties of BOLD and ASL Perfusion fMRI [6]. 

 
 
 
 
 
 
 
 
 
 

 

BOLD         ASL perfusion 

Signal mechanism   Blood flow, blood volume, oxygenation consumption      Blood flow 
Contrast parameter   T2*          T1 
Spatial specificity   Venules and draining veins        Capillaries, arterioles 
Typical signal change   0.5–5%          <1% 
Imaging methods   Gradient-echo         Gradient-echo 
    Offset spin-echo          Spin-echo 
Optimal task frequency (block design) 0.01–0.06 Hz         <0.01 Hz 
Sample rate (TR)   1–3 s per image         3–8 s per perfusion image 
Relative contrast-to-noise ratio  >2 with high task frequency <0.5 with low task      1 
    frequency  
Intersubject variability  High          Low 
Imaging coverage   Whole brain         Part or most of brain cortex 
Major artifacts   Susceptibility; motion; baseline drift     Vascular artifact 

 
 
A major application of fMRI is the study of task-related functional activation.  In these 

studies, the subject performs a specified task during scanning to locate the area of the brain 

responsible for that activity.  For example, a subject might perform a finger tapping exercise in 

the scanner to image the brain regions involved in that activity.  The most commonly applied 

experimental paradigms in the examination of task-related fMRI activation are block and event-

related designs.  Block designs involve trials of alternating periods of task and control conditions 
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to evoke sustained functional responses.  The control blocks are designed to induce the same 

responses as the task stimuli, except for the cognitive process of interest.  The differences 

between the responses to these two conditions can then be attributed to the task.  Block designs 

maximize sensitivity by generating large, sustained signal changes, but individual tasks 

responses cannot be isolated with this type of experimental design.  Conversely, event-related 

designs are devised to study responses to individual task stimuli and allow the activation due to 

these stimuli to be isolated.  The difficulty with event-related studies is that statistical analysis of 

such data requires an accurate model of the hemodynamic response, which is not easily 

characterized [5].  Block data analysis is not as dependent on an accurate hemodynamic model. 

2.2 Electroencephalography 

Electroencephalography is a neurophysiologic tool for measuring electrical activity in the 

brain.  The resulting recordings, known as electroencephalograms (EEGs), have high temporal 

resolution – on the order of milliseconds – compared to fMRI.  Although neuroimaging methods, 

such as fMRI and positron emission tomography (PET), are increasingly utilized in the study of 

epilepsy, EEG continues to be the primary means of diagnosing and studying epilepsy 

syndromes. 

During EEG recordings, electrical activity is measured through scalp electrodes, grid or 

strip electrodes placed directly on the cerebral cortex, or depth electrodes inserted into the brain.  

While scalp EEG is valuable because it is noninvasive, it suffers from low spatial resolution and 

is highly susceptible to motion and recording artifacts.  Scalp EEG has an effective monitoring 

depth of only about 1 cm from the surface of the brain.  The recorded signals are distorted and 

have much of their high frequency activity filtered out by the intervening tissue, skull, and 

cerebrospinal fluid.  The inverse problem (i.e., using distant scalp electrodes to pinpoint distinct 
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generators of epileptic events) makes precise localization of the epileptic cortex impossible [7].  

In contrast, intracranial EEG (IEEG) signals are relatively free of artifacts and easier to interpret 

than the noisy scalp traces.  Another advantage of using intracranial electrodes is that they can be 

inserted directly into subcortical regions, such as the mesial temporal lobe, to observe areas at 

depths greater than 1 cm from the surface.  IEEG often detects neural activity that is not visible 

or well localized in scalp recordings [8].  IEEG is clearly a more powerful tool in the study of 

epilepsy, but the collection of IEEG data is limited because of its highly invasive nature and the 

potential for surgical complications. 

2.3 Applications of fMRI in Epilepsy Research 

A potential complication of temporal lobectomy is the loss of memory and language 

functions.  The intracarotid amobarbital test (IAT), also known as the Wada test, is the standard 

diagnostic tool for presurgical lateralization of memory and language.  During the test, portions 

of one brain hemisphere are anesthetized so that function in the other hemisphere can be tested 

independently.  Though this test is highly accurate, it is invasive and therefore potentially risky.  

Many researchers have investigated the application of fMRI as a noninvasive alternative to IAT.  

Desmond et al. [9] and Binder et al. [10] both reported strong agreement between the language 

laterality determined using fMRI and IAT on epilepsy patients.  These studies involved using 

different tasks to activate regions of the brain responsible for language function in order to 

lateralize language dominance.  Detre et al. performed a visual scene encoding task activation 

study for lateralizing memory function and also found excellent agreement between the fMRI 

and IAT results [11]. 

Detre et al. were able to detect localized signal intensity changes in the BOLD fMRI time 

courses of a focal epilepsy patient [12].  After subtracting the mean brain voxel intensity over the 
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12-minute scan from each slice, the images were thresholded to locate areas of significant 

functional change.  Thresholds of 0.6 to 3% change from the mean were used. Through this time 

series analysis, they identified focal fluctuations that correlated well with the epileptogenic zones 

found using ictal SPECT (single photon emission computed tomography) and intracranial EEG.  

Subsequent region of interest analysis found two highly stereotyped events indicative of 

subclinical seizures.  Though this method proved useful for mapping ictal activity with fMRI in 

this single patient, a larger study would be needed to validate the analysis.  Also, a technique for 

identifying interictal activity would be even more advantageous since ictal activity during fMRI 

scans is uncommon and can result in large movement artifacts in the images. 

Morgan et al. investigated the use of temporal clustering analysis (TCA) to localize 

interictal epileptic activity in resting BOLD images without the need for simultaneous EEG 

recordings [3].  They studied six temporal lobe epilepsy (TLE) patients and three patients whose 

seizure localization had not yet been confirmed by successful surgery.  A histogram of the 

number of voxels reaching their maximum intensities at each point in time was created for each 

subject.  Only voxels whose intensities were above a certain background noise threshold and 

whose maximum values were 2 to 10% greater than the initial intensity were include in the 

analysis.  Peaks in the histogram were identified as time points with at least 100 voxels attaining 

a maximum intensity.  These peaks found using TCA were then convolved with a BOLD 

hemodynamic response function to create a model of the BOLD signal response curve for that 

data series.  Traditional event-related statistical parametric mapping (SPM) analysis, which 

involves application of the general linear model for statistical analysis of brain activity, was then 

carried out on the modeled BOLD response curves to find the areas of activation.  The regions of 

activation found using TCA and SPM were concordant with the abnormal regions identified 
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using standard EEG and PET analysis.  While the results are promising, the problem with the 

TCA technique is that spikes cannot be conclusively coupled with epileptic events since there are 

no electrophysiological recordings with which to correlate the spikes.  Also, the peaks in the 

histogram are not necessarily due to epileptic activity.  In fact, this technique incorrectly 

considers voxels randomly reaching their maxima during a peak to be activated. 

Wolf et al. were able to detect mesial temporal lobe hypoperfusion in epilepsy patients 

using ASL perfusion data [13].  Twelve patients with medically refractory TLE and twelve 

healthy subjects were scanned using continuous ASL perfusion.  Using manually drawn masks of 

the mesial temporal lobes (mTLs), the mean CBF values in those regions were calculated.   The 

authors found that in the control participants, the normalized mTL CBF (found by dividing the 

regional mean by the global CBF) tended to be significantly higher on the left than the right side.  

There was evidence of hypoperfusion ipsilateral to (i.e., on the same side as) the epileptogenic 

temporal lobe in eleven of the twelve patients.  Asymmetry indices – measures of the differences 

in the mean values between the two lobes – were not significantly different in patients and 

controls, but the asymmetry index proved useful in clinical lateralization.  The ASL perfusion 

lateralization agreed with the PET lateralization for all but one patient who underwent an 18FDG-

PET scan.  These results demonstrate that clinical lateralization of TLE patients can, in most 

cases, be determined by the presence of hypoperfusion in the ipsilateral mTL. 

2.4 Combining EEG and fMRI 

The use of both EEG and fMRI in the localization of epileptiform activity allows one to 

combine the high temporal resolution of EEG and the high spatial resolution of fMRI for a better 

understanding of the spatiotemporal dynamics of epileptiform discharges.  This fusion provides 

the ability to correlate regional fMRI signal changes to epileptic spikes in the EEG.  The 
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technical problems of acquiring simultaneous EEG and fMRI have been solved, and the data can 

be safely acquired using specialized equipment [14].  The use of MR-compatible electrodes, 

safety resistors, and fiber optic isolation protects the patient, and shielding the electronics 

minimizes the effects of the EEG recording on the image quality.  A more difficult problem to 

address is the creation of large artifacts in the EEG signal during simultaneous image acquisition.  

The voltages of the time-varying magnetic fields completely obscure the EEG rendering the data 

useless in the absence of any post-processing.  For this reason, most EEG/fMRI recordings have 

been interleaved until recently. 

Jäger et al. developed a spike-related fMRI method to detect epileptiform activity [15].  

The EEG recordings were monitored online by a neurologist, and BOLD fMRI recordings were 

initiated 3–5 seconds after an epileptic discharge.  The image acquisition was delayed to ensure 

that EEG events did not influence image contrast.  There is an approximately three second delay 

in BOLD signal changes after an event, so the imaging delay did not result in the loss of contrast 

data after the EEG event.  Ballistocardiographic contamination, artifacts in the EEG due to the 

beating of the heart, was removed using subtraction techniques, and artifacts that arose due to 

imaging were removed using commercially available software.   The authors were able to find 

significant increases in the BOLD signal intensity, with a peak 6–7 seconds after the spike 

detection.  The signal then decreased and returned to normal after about eighteen seconds.  These 

results are promising for understanding the hemodynamic response to interictal events, but the 

problem with this technique is the lack of baseline imaging data and pre- and post-ictal data.  

Continuous, simultaneous EEG and fMRI recordings clearly provide more useful information.   

With more advanced hardware and improved post-processing techniques for imaging 

artifact removal, continuous acquisition of both functional MR images and EEG is now possible 
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[16].  Bénar et al. discuss various techniques for the removal of the ballistocardiogram and 

gradient artifacts from the EEG.  Previously subtraction techniques and spatial filtering had been 

used to eliminate the ballistocardiogram.  Here the authors present spatial filtering techniques 

based on principal component analysis (PCA) and independent component analysis (ICA).  

When spatially filtering, there is a tradeoff between removing the ballistocardiogram and 

preserving the spikes in the EEG.  When using PCA decomposition, ballistocardiographic 

activity is usually clearly visible in one or two components.  By removing one component, they 

found the best results in terms of balancing removal of the ballistocardiogram and preservation 

of the spikes.  With ICA there is typically clear ballistocardiographic activity in three or four 

components, which can all be removed while preserving spikes.  Spatial filtering using ICA 

tended to yield better results than PCA. 

Bénar et al. also developed a technique for removing the gradient artifact [16].  The 

procedure entailed building a model of the artifact and subtracting it from each frame of the 

EEG.  They compared their technique to the Fourier method developed by Hoffmann et al. in 

[17]  and found that their subtraction filter worked better than the Fourier method in most cases 

and worked as well in all other cases.  The Fourier method involved computing the FFT of 10-

second segments of EEG and noting frequencies for which the FFT amplitude differed from the 

baseline spectrum by more than a certain factor (typically two or three).  The corresponding 

Fourier coefficients of these frequencies were set to zero and an inverse Fourier transformation 

was obtained, thus yielding a signal that was free of artifacts. 

Baudewig et al. were able to localize epileptic activity by linking EEG abnormalities to 

BOLD signal changes in simultaneously recorded fMRI [18].  In their study, an epileptologist 

examined the EEG and identified segments of epileptic activity.  The epileptic events were then 
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correlated with specific images.  For each of these images, they measured the change in BOLD 

signal intensity in order to find the activated pixels in each image.  One unresolved problem with 

their work and all BOLD fMRI analysis is whether the areas of epileptic activity found were the 

true epileptic foci or simply areas of induced activity. 

Combining EEG and fMRI in the localization of epileptiform generators appears quite 

promising, but the equipment necessary to acquire simultaneous EEG and fMRI data is not 

widely available.  Until such resources become available, another option for fusing the two 

modalities is to examine EEG and fMRI data acquired from the same patient at different times 

and correlating the areas of fMRI activation with the EEG channels exhibiting epileptic spikes.  

While such an analysis would not be as powerful as studying simultaneous recordings, it would 

likely prove to be more accurate than analysis of fMRI alone. 

2.5 Genetic Programming 

Genetic programming (GP) is a machine learning technique that employs an evolutionary 

algorithm to generate an optimal program to solve a given problem [19, 20].  Evolutionary 

algorithms apply genetic operators such as reproduction, mutation, crossover, and selection to 

find optimal solutions from populations of candidate solutions, also known as individuals or 

chromosomes.  Individuals are assessed through evaluation of a fitness function, which measures 

the individual’s ability to solve the given problem.  The result of the algorithm is the individual 

with the best fitness.   

GP is an extension of genetic algorithms (GA), but there are a few key differences.  First, 

unlike GA, which finds a direct solution to a problem, GP outputs a program that can be used to 

solve the problem.  The variably sized GP programs are represented as tree structures; on the 

other hand, GA chromosomes are fixed-length and represented as strings or vectors of binary or 
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real values.  Because the size of individuals is not fixed in GP, the algorithm is capable of 

creating both simple and highly complex individuals.   A simple example a GP tree is shown in 

Figure 2.  The gray nodes represent functions, and the white nodes represent terminals.  

Functions are arithmetic, mathematical, Boolean, or conditional operators, and terminals are user 

inputs to the GP algorithm and constants. 

 

 

X1 X1 X2

log +

×

 
Figure 2.  Tree representation of the GP program log(X1)×(X1+X2). 

 
 

The GP algorithm evolves programs through an iterative process.  Each iteration of the 

algorithm is known as a generation. During the initial generation, randomly generated 

individuals populate the solution space.  With each new generation, the population is diversified 

through selection, crossover, and mutation operations.  Selection involves choosing a set of 

individuals from the larger population based on a fitness criterion. In a crossover operation, two 

new individuals (offspring) are produced as combinations of two parents.  This is accomplished 

by selecting a node in each parent tree and then swapping the subtrees branching from those 

nodes.  Figure 3 illustrates a typical crossover operation.  Like crossover, mutation operations 

generate new offspring; however, mutation involves only a single parent.  A subtree is selected 
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and replaced by a randomly generated tree to create a new individual.  A mutation operation is 

illustrated in Figure 4.  The process of creating new populations continues until the maximum 

number of generations is reached or until a stop criterion, such as a specified fitness level, is met. 

 
 

 Crossover

(a)

(b)

Parents

Children

 

Figure 3.  Illustration of a GP crossover operation. (a) Individuals whose subtrees will be swapped. (b) 
The new individuals resulting from the crossover. 
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Randomly 
generated 
replacement 

Subtree selected 
for mutation 

Mutation

(a)

(b)

Figure 4.  Illustration of a GP mutation operation. (a) Individual with subtree selected for mutation. (b) 
New individual created through mutation. 
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3  Preliminary Research 

3.1 BOLD fMRI Analysis 

Event-related BOLD data from eleven temporal lobe epilepsy (TLE) patients were 

acquired from the Center for Functional Neuroimaging at the University of Pennsylvania.  Each 

event-related dataset consists of 298 three-dimensional image volumes acquired three seconds 

apart at a magnetic field strength of 3 Tesla.  The raw images are 64 × 64 × 40 voxels in size 

with a voxel resolution of 3 × 3 × 3 mm3.   An example of a raw BOLD image is shown in Figure 

5.  From the group of eleven patients, the three who at the time of this analysis had been 

rendered seizure free by surgery were chosen for the initial investigation.  For these patients, the 

seizure foci were correctly identified by their doctors and could be used to validate the results.  

 To ensure that the class separation found in the feature analysis was truly due to 

differences between the epileptic and normal regions, not simply intrinsic differences between 

the two brain hemispheres, control data from healthy subjects had to be analyzed as well.  

Unfortunately, no event-related BOLD data from controls were available.  Although 

comparisons of data acquired using different experimental paradigms are not ideal, block scans 

from one normal subject were evaluated to compare with the patients’ results.  Both the block 

and event-related paradigms were designed to activate the mesial temporal lobe for memory 

lateralization.  The block design as described in [21] involved presentation of complex visual 

scenes and a single control image in alternating forty-second blocks. A single visual stimulus 

was presented approximately every fourteen seconds for the event-related design.  The block 

dataset consists of 172 fMRI images of the same size, temporal spacing, and magnetic field 

strength as the event data. 
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Figure 5.  A single raw BOLD image of a patient with temporal lobe epilepsy. 

 
 
 In the following sections on BOLD fMRI analysis, the three patients will be identified as 

S5, S6, and S11, and the healthy control will be referred to as C1. 

3.1.1 Preprocessing 

 Before the images could be analyzed, they had to be preprocessed to reduce artifacts and 

noise corruption.  The first four images from each set of scans were discarded because the 

magnetization had not yet stabilized to a steady state.  The remaining images were then realigned 

to the first functional image in order to account for signal changes due to subject motion during 

scanning [22].  Following realignment, the functional and anatomical images were co-registered 

so that they lined up evenly with one another.  As every brain has unique shape, size, and 
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structure, all scans were subsequently normalized to a 3 × 3 × 3 mm3 Montreal Neurological 

Institute (MNI) template for comparison across patients.  Normalization warps images so that 

they conform to the space of a standard template brain [22].  The resulting dimensions of the 

normalized images were 53 × 63 × 46 voxels.  The final step before signal analysis was spatial 

smoothing.  A seven-millimeter full width at half maximum Gaussian smoothing kernel was 

applied to increase the overall signal-to-noise ratio (SNR), while also limiting the low-frequency 

noise amplification caused by spatial smoothing with too large a kernel [23].  All realignment, 

co-registration, normalization, and smoothing were performed with Statistical Parametric 

Mapping software (SPM2) [22, 24, 25]. 

 
 

 
Figure 6.  BOLD signal time course extraction. 
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3.1.2 Time Course Extraction 

 The voxel time course is a signal corresponding to the change in a voxel’s intensity 

throughout time.  Each image is a three-dimensional array representing the fMRI signal values of 

the voxels at a single point in time.  By extracting the voxel intensity from the images at every 

time point, the voxel time course can be obtained as shown in Figure 6. 

The considerable size of the final preprocessed images makes analysis of all voxels 

extremely computationally expensive.  To reduce the total amount of data being processed, 

region of interest (ROI) analysis was employed.  Masks of each mesial temporal lobe, consisting 

of the hippocampus, amygdala, and parahippocampal gyrus, were created using the WFU 

Pickatlas toolbox for SPM2 [26-28], which allows users to generate and save anatomical masks 

using a set of human brain atlases.  These standardized masks were the bases for the subsequent 

regional analyses. 

3.1.3 Feature Extraction 

In the absence of any structural abnormalities, the epileptic focus cannot be identified 

simply through visual inspection of anatomical or functional images.  Figure 7 shows the BOLD 

time courses of voxels from the left and right mesial temporal lobes of a TLE patient with left 

side onset.  The differences in the time courses of the voxels from the two hemispheres do not 

visibly indicate which region is normal and which is epileptogenic.  Clearly, a quantitative 

analysis technique is needed to lateralize TLE. 
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                                      (c)                                                                         (d) 
Figure 7.  Normalized histograms of feature values for patient S5. (a) Energy, (b) Skewness, (c) Shannon 

Entropy, (d) Median Frequency. Blue denotes the left mTL, and red denotes the right mTL. 

 
 
The thirteen features listed in Table 2 were extracted from the time courses of the mesial 

temporal lobe voxels to determine which, if any, would be useful in differentiating between the 

normal and abnormal lobes.  These features were chosen because they made intuitive sense and 

because they have proven useful in the analysis of other electrophysiological signals such as 

EEG [29].  Features from multiple domains were extracted to reveal not only temporal 

characteristics of the time courses but frequency and statistical information as well.  The time 

domain features, energy, curve length, and nonlinear (Teager) energy measure signal strength 

and variability between successive samples.  The median, mean, and peak frequency values 
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correspond to the frequencies at which the power spectrum of a signal reaches its median, mean, 

and peak, respectively.  Shannon entropy measures the randomness in the amplitude of the 

signal, whereas spectral entropy measures the randomness in the distribution of frequency in the 

power spectrum.  Renyi entropy is a generalization of Shannon entropy, and the statistical 

features convey information about the probability distributions of the signals.  In the presence of 

epileptiform discharges, one might expect higher signal amplitudes and greater oscillations in the 

BOLD signal due to the increased neuronal activity.  The previously described features seem 

suited to identifying such signal changes. 

3.1.4 Genetic Programming 

 None of the thirteen features extracted from the data showed clear separation between the 

left and right mesial temporal lobes.  In most cases the histograms of the feature values for the 

two classes overlapped almost completely.  Figure 8 shows the histograms of four features 

extracted from the BOLD time course of patient S5.  The blue PDF denotes the left mTL feature 

values, and the red denotes the right mTL values. The other features had similar distributions. 

Genetic programming was employed to fuse the various features into one for better class 

separation for each patient.  The thirteen feature values from all mTL voxels were entered into 

the GP.  The GP was allowed to evolve over one hundred generations to find the program that 

would minimize the fitness function.  The inverse of the Fisher discriminant ratio (IFDR), seen 

in equation 1, was chosen as the fitness function because it measures class separability, and the 

goal was to maximize the distance between the two classes.  The patient-specific features created 

by the GP when applying this fitness function were quite complicated and non-intuitive.  At 

times, the trees grew to over two hundred nodes before reaching the maximum number of 
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generations.  Such complexity suggests that the GP algorithm is modeling fMRI noise, not the 

underlying hemodynamic response. 

 
 
 

Table 2.  Feature Set. 
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Note:  µ = mean of x, Pxx = power spectral density of x, p = histogram of x, Fs = sampling frequency. 

21 



 

 

 
 Figure 8.  Time courses of mesial temporal lobe (mTL) voxels of a TLE patient.  (a,b) Left mTL voxels 

from slices 14 and 16, respectively.  (c,d) Right mTL voxels from the same slices. 
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An example of a GP tree is shown in Figure 9.  The terminal nodes, represented by dots, 

are the input features listed in Table 2.  The GP routine assigned a label, X1 – X13, to each 

feature for graphical representation.  The triangles in the tree structure represent operators from 

the function set used to create the best individual.  The function set consists of built-in Matlab 

functions and user-defined functions. 
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Figure 9.  Tree representation of composite feature generated by the GP for patient S5. 

 
 
3.1.5 Classification 

The results of the GP were assessed qualitatively through visual inspection of the 

resulting feature histograms and also by classification accuracy.  In all cases, the composite 

features still resulted in significant overlap between the two classes, so the classifier-based 

measure of separability was needed to determine the usefulness of these composite features.  A 

k-nearest neighbor (k-NN) classifier (k = 3) was applied to label all voxels as belonging to either 

the left or right mTL.  The classification accuracies when using the GP generated features were 

similar in the patients and control.  All accuracies were in the range of 75 – 86%, where the 

lower values resulted from the analyses of patient S6 and control C1.  From these classification 

accuracies, it is evident that this GP based feature creation technique can detect differences 

between voxels in the left and right brain hemispheres of epilepsy patients and healthy controls; 
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however, the nature of these differences is not clear.  They could be due to the presence of 

epileptic activity, or they could result from normal variations in each subject’s brain regions. 

3.1.6 Noise Removal 

 In addition to spatially smoothing the images to increase SNR, linear detrending and 

principal component analysis (PCA) and independent component analysis (ICA) based noise 

removal techniques and were applied to the data for noise reduction.  Linear detrending was 

applied to remove low frequency signal drift, which can overshadow activation [30]. Thomas et 

al. investigated the use of component analysis to separate BOLD signal change from random 

noise [31].  To reduce the random noise, time courses were decomposed using both PCA and 

ICA, and those components determined to be mainly white noise were set to zero.  The signals 

were then reconstructed from the remaining components and analyzed again.  While the noise 

removal techniques did improve the overall SNR of the time courses, they did little to improve 

the classification accuracy for any of the subjects. Physiological noise resulting from respiratory 

and cardiac effects could still be hindering with the analysis.  This difficulty in clearly 

discriminating between normal and epileptic activity could be due to the BOLD signal contrast’s 

inability to detect slow changes in neural activity over long periods of time [32]. Although the 

majority of the event-related images were taken during rest, the task activation may still have 

overshadowed the response due to epileptiform discharges. 

3.2 ASL Perfusion fMRI Analysis 

 Continuous ASL (CASL) perfusion datasets from three epilepsy patients and two control 

subjects were studied to determine whether or not perfusion fMRI data are better suited than 

BOLD fMRI to imaging blood flow changes due to spontaneous neural activity in epileptic 

networks.  The resting perfusion images were collected during consecutive ten-minute scanning 
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sessions at 3T with a repetition time of three seconds.  All subjects, except the first control, were 

scanned for forty minutes, so these datasets consist of four functional runs and contain a total of 

800 images.  The first control dataset consists of only two functional runs.  The raw perfusion 

images are 64 × 64 × 16 arrays with voxel resolutions of 3.44 × 3.44 × 7.50 mm3.  The odd 

numbered scans are label images, and the even numbered scans are control images. 

3.2.1 Preprocessing 

 A slightly different preprocessing approach was adopted in preparing the perfusion data 

for analysis than was taken with the BOLD data.  This procedure was chosen in conjunction with 

functional imaging researchers at the University of Pennsylvania.  Instead of realigning whole 

images to one another, the images were realigned slice-by-slice to reduce artifacts in the final 

cerebral blood flow (CBF) images.  The images were then smoothed with an 8 mm full width at 

half maximum Gaussian kernel to reduce noise.  After smoothing, the functional and anatomical 

images were co-registered. 

3.2.2 Perfusion Signal and CBF Calculation  

One of the advantages of ASL perfusion over BOLD is that it measures blood flow 

changes in physiological units of ml/100g/min unlike BOLD fMRI, which can only measure 

relative changes in local blood oxygenation.  The raw output images of ASL perfusion scanning 

must be converted into CBF images to measure blood flow.  The perfusion images were created 

through simple pairwise subtraction, meaning each label image was subtracted from the 

preceding control image.  The CBF images were then calculated from the perfusion images using 

the equation described in [33]. 

The first step in our image analysis was to look for evidence of hypoperfusion in the 

epileptogenic lobes similar to that found by Wolf et al. [13].  Patients 1 and 3 showed 
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hypoperfusion in both the epileptogenic mTL and the entire temporal lobe.  Patient 2 did not 

exhibit hypoperfusion in the epileptogenic mTL but did within the whole temporal lobe.  There 

were also perfusion asymmetries between the two hemispheres in the controls.  In both cases, the 

right mTL had a lower perfusion value than the left, as reported by Wolf et al.  For all patients, 

neurologists determined the seizure onset side through analysis of EEG recordings.  The mean 

CBF calculations are summarized in Table 3. 

 
Table 3.  Mean CBF values (in units of ml/100g/min) over the entire scan time. 

Mesial Temporal Lobe Temporal Lobe Subject Seizure Side Global Left Right Left Right 
Pt1 Left 70.322 78.171 83.930 89.875 96.847 
Pt2 Right 45.667 58.568 61.689 66.331 62.739 
Pt3 Left 27.768 47.477 52.852 52.023 58.713 

Control1 N/A 56.136 78.152 74.882 91.148 92.566 
Control2 N/A 42.543 48.952 47.459 56.988 58.390 

 

3.2.3 Feature Extraction and Fusion 

The features listed in Table 2 were extracted from the time courses of the mesial temporal 

voxels of the CBF images.  For the preliminary analysis, only images from the final ten minutes 

of the functional scans were analyzed because by that time all subjects had fallen asleep. There is 

generally increased epileptic activity in TLE patients during sleep, so these images likely contain 

abnormal activity.  As before, the features were fused for each subject using a GP algorithm.  In 

addition to the function described in equation 1, a new fitness function was tested.  This fitness 

measure, found in equation 2, is the inverse Fisher discriminant ratio divided by one minus the 

PDF overlap.  This fitness function was chosen because features with seemingly good fitness 

values may still have large overlaps.  The overlap values range from 0 (no overlap) to 1 (total 

overlap).  The new fitness function penalizes individuals with large class overlaps by increasing 
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the fitness score in proportion to the amount overlap.  The individual with the lowest fitness 

score is ultimately selected. 
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3.2.4 Classification 

The GP generated features from the CBF time courses were also evaluated qualitatively 

and quantitatively.  Two of the patients, Pt1 and Pt2, had composite features that showed good 

separation between the left and right mTLs.  The third however, Pt3, had much larger areas of 

overlap in the feature histograms.  The composite features for the two controls also overlapped 

significantly.  The features generated using the fitness in equation 2 had higher accuracies than 

those found using equation 1, so equation 2 was selected as the better fitness function for this 

application and used in all analysis of the ASL data.  The accuracies of the k-NN classifier and 

GP tree information for all subjects are summarized in Table 4.  The overall accuracy, 

sensitivity, specificity, and the numbers of levels and nodes in the GP trees are included. 

Table 4.  ASL perfusion data classification results. 

Subject Accuracy Sensitivity Specificity Levels Nodes 

Pt1 92.267% 90.439% 94.215% 5 8 
Pt2 90.333% 94.574% 85.813% 9 15 
Pt3 82.267% 79.845% 84.849% 7 14 

Control1 75.400% 68.217% 83.058% 10 46 
Control2 82.333% 76.486% 88.568% 10 48 

 

The GP features when combined with a k-nn classifier were highly accurate in 

distinguishing between normal and epileptic mTLs in Pt1 and Pt2.  The classification accuracy 

for Pt3 was decent but not as high as for the other two patients.  Although the GP was able to 

separate the two classes to an extent in both controls, the features it generated were much more 
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complex than the patient features, meaning the GP could find distinctions between the two 

regions but with more difficulty.  These dissimilarities could be attributable to noise or other 

physiological patterns unrelated to epileptic activity.  As shown in Table 3, there are inherent 

differences in the mean CBF values of the left and right lobes.  The GP may well be recognizing 

these intrinsic variations in the cases of the controls. On the other hand, the patients’ mTLs have 

more easily characterized differences that can be encapsulated in simpler features.  

3.2.5 Universal Features 

 While patient specific features are useful for analyzing data on a case-by-case basis, a 

universal feature, one applicable to all epilepsy patients, would be more powerful.  After initial 

training of the GP and the classifier to find this universal feature, the feature extraction and 

genetic programming steps previously described would no longer be necessary.  The universal 

feature would simply be extracted from the preprocessed data, and then all voxels would be 

classified based on this criterion.  Patient specific feature generation was chosen for the 

previously described analysis because physiological differences between patients would likely 

confound universal feature creation. 

 In an attempt to find such a feature for the ASL perfusion data, the voxels from the 

epileptogenic and normal lobes of the two left TLE patients, Pt1 and Pt3, were entered into the 

GP to find a feature capable of separating the two classes.  The resultant feature had a 

classification accuracy of 82%, but the GP tree consisted of thirty-seven nodes and nine levels.  

As previously discussed, this large tree size could indicate that the GP is finding random 

differences or innate physiological differences not associated with epileptic activity. 

After being unable to find a good universal feature, the feasibility of creating one was 

tested.  Voxel features from the left mTLs of Pt1 and Pt3 were compared to one another to 
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determine the amount similarity between them.  The test was then repeated for the right mTLs.  

In both cases, the GP was able to separate the patients’ voxels with over 99% accuracy using 

simple features with low numbers of nodes and levels.  The GP tree and feature histogram for the 

right mTL voxels of Pt1 and Pt3 are shown in Figures 10 and 11, respectively.  This result 

substantiates the initial hypothesis that physiological variations cause feature values across 

patients to be completely different and therefore not comparable.  Because the time courses are 

so disparate, grouping voxels across patients to find commonalities is not possible, thus making 

creation of universal features impractical. 

 

 

X2 X6

  times

  kozasqrt

  abs

  mylog

 
Figure 10.  GP feature tree for separating right mTL voxels of Pt1 and Pt3. 
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Figure 11.  GP histogram corresponding to the feature in Figure 10.  The blue and red represent Pt1 and 

Pt3 respectively.
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SECTION II 
 
 
 
4  Proposed Research 

The objective of the proposed research is to develop a novel voxel-based analysis 

technique for mapping epileptic networks by distinguishing between normal brain tissue and the 

epileptic focus in fMRI data.  Functional MRI is a noninvasive technology possessing higher 

spatial resolution than scalp EEG, which is typically used for focus localization.  Accurate 

localization of the epileptogenic zone is crucial for successful outcome to surgery in patients 

with medically refractory epilepsy.  As implantable neurostimulators become more widely used, 

correct localization will also be essential for placement of sensing and stimulation electrodes. 

The primary objective will be addressed through the development and validation of a set 

of features from the time, frequency, information theory, and statistical domains that will enable 

clear discrimination between normal and abnormal brain tissue in the ASL perfusion images of 

temporal lobe epilepsy patients.  Initially, the data will be preprocessed to account for artifacts 

due to subject motion during imaging, to increase the signal-to-noise ratio, and to normalize all 

data into a standard space for cross subject comparisons. Then, for each voxel in the regions of 

interest, features will be extracted from the voxel time courses, and these values will be entered 

into a genetic programming algorithm for fusion of the features and creation of a single 

composite feature for better class separation.  The composite feature value will be the criterion 

used for classifying the voxels as either normal or epileptogenic. 

The following section presents the proposed methodology in greater detail. 
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4.1 Proposed Methodology 

The proposed methodology consists of five main components: preprocessing, time signal 

extraction, feature extraction, genetic programming, and classification.  A block diagram of the 

system is shown in Figure 12. 
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Figure 12.  Proposed system for normal/epileptogenic tissue discrimination. 

 
 
4.1.1 Data 

Resting ASL perfusion data from approximately twenty temporal lobe epilepsy patients 

and ten controls will be collected by the Center for Functional Neuroimaging at the University of 

Pennsylvania over the next year and will be provided for analysis as it becomes available.  Each 

subject’s perfusion dataset consists of four consecutive ten-minute perfusion runs, and each ten-
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minute run contains 200 images.  The functional runs will be analyzed individually and also 

concatenated to see how blood flow changes evolve over longer periods of time in the epileptic 

brain.  If any of the patients are implanted with intracranial electrodes in the near future, as 

expected, IEEG and fMRI localization results will be compared.  Information about suspected 

seizure sources as determined by initial scalp EEG monitoring and PET scans will also be 

provided for all patients. 

4.1.2 Preprocessing 

Prior to any analysis of fMRI data, the images must be preprocessed to remove artifacts 

due to subject motion and scanner noise.  For the ASL perfusion data to be analyzed, the 

preprocessing procedure includes realignment of the data to reduce motion artifacts, and spatial 

smoothing with a Gaussian kernel to average out uncorrelated noise.  The data are also 

normalized to warp all scans into the space of a template brain so that cross patient comparisons 

can be made and standardized masks can be used for regional analysis.  All of these steps will be 

carried out using the SPM2 toolbox for Matlab.  Much of the scanner and physiological noise 

may still be present after the initial preprocessing, so additional measures, such as ICA or PCA 

based noise removal, may be necessary before individual voxel time courses can be examined 

and used for classification. 

4.1.3 Voxel Time Course Extraction 

Typically in epilepsy research, resting perfusion data are examined for the presence of 

hypoperfusion in the epileptogenic region.  This entails computation of the mean CBF image 

over time and comparing the mean value within the suspected epileptic region and the 

corresponding contralateral region.  The proposed research focuses on investigating how signals 

evolve over time in each individual voxel, not simply considering the mean value of each voxel. 
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Each normalized image consists of 153,594 voxels, so to reduce the computational 

burden, regions of interest (ROIs) are defined and become the focus of the investigation.  

Through the review of previous research in fMRI analysis and discussions with neurologists, 

multiple ROIs have been chosen for the temporal lobe epilepsy patient study.  These regions 

include the entire temporal lobe, the mesial temporal lobe, and the hippocampus. Figure 13 

shows a single slice of the masks for these three regions.  ROI masks will be created using the 

WFU Pickatlas program.  A neurologist will also draw patient specific masks for comparison 

purposes.  As all brains are different, no template masks can perfectly match the structure of 

every individual’s brain, even if the images have been transformed into a standard space.  The 

patient specific masks will more accurately represent the ROIs and could potentially alter the 

results significantly. 

 

 
Figure 13.  Slices from the normalized ROI masks of the (a) temporal lobe, (b) mesial temporal lobe,             

and (c) hippocampus. 

 
 
4.1.4 Feature Extraction 

Additional features must be investigated to find the best set for distinguishing between 

epileptogenic regions and normal tissue.  Of the thirteen features examined thus far, no single 
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feature shows a clear distinction between normal and abnormal tissue.  In most cases, the feature 

values in these two regions completely overlap.  Through the exploration of additional features 

from the time, frequency, statistical, and mutual information domains, we hope to attain better 

class separation and therefore better classification results.  Receiver operating characteristic 

(ROC) analysis will be used to assess the performance of the features.  A receiver operating 

characteristic is a plot of the sensitivity versus one minus the specificity of a classifier as the 

discrimination threshold is varied.  The area under the curve (AUC) indicates how well the 

classifier performs [34].  Random classification will result in an AUC of 0.5, and a perfect 

classifier will have an AUC of 1.  Each features value as a predictor will be assessed based on its 

AUC.  An example of an ROC curve is shown in Figure 14. 
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Figure 14.  Examples of ROC curves.  The solid line represents an ROC curve with an AUC of 0.79392.  The 

dashed line represents the ROC for a completely random classifier. 
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4.1.5 Genetic Programming 

The purpose of the genetic programming step is to find the best composite feature for 

separating two classes by combining the individual features using a user-defined function set.  

The best composite feature created by the GP will depend on the fitness function used.  Three 

fitness functions, two based on maximizing the Fisher discriminant ratio and one that evaluates 

each individual with a k-NN classifier, will be employed to develop composite features for each 

subject. 

4.1.6 Classification 

A k-NN classifier will be utilized to classify all voxels in the regions of interest.  The 

composite feature value will be calculated for each voxel and will determine whether a given 

voxel is labeled as normal or epileptogenic.  Leave-one-out validation will be used to evaluate 

the accuracy of each feature and determine which is best.  Values of k = 3, 5, and 7 will be tested 

for the best accuracy.  Support vector machines and fuzzy classifiers will be explored as well to 

account for uncertainty due to overlap in the feature space. 

4.1.7 Phantom Data Generation 

 A phantom dataset will be created to validate the experimental results.  The 

hemodynamic response of perfusion fMRI, which is similar to the BOLD response, will be 

modeled as a sum of two gamma functions [35, 36].  This model hemodynamic response 

function (HRF) will then be added to selected voxels of the resting perfusion data of a healthy 

control to simulate spontaneous epileptic activity in a patient. Since the exact location of the 

abnormal activity will be known, the efficacy of the proposed system can be demonstrated.  This 

step will verify that the system does indeed classify the voxels based on the presence of 

epileptiform discharges, not merely noise or other random effects. 
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4.2 Work Completed 

• Development of a voxel-based fMRI time series analysis routine that enables 

discrimination between normal brain and epileptic cortex 

• Implementation of PCA and ICA based noise removal techniques 

• Extraction and selection of features from BOLD fMRI time series data and classification 

of voxels as epileptogenic or normal 

• Preliminary feature analysis of five ASL perfusion fMRI datasets (three epilepsy patients 

and two controls) 

4.3 Work Remaining 
 

• Analyze additional patient data as they become available 

• Apply noise removal techniques to improve signal-to-noise ratio of ASL perfusion data 

• Investigate additional features to better discriminate between normal and epileptogenic 

tissue and rank them using ROC analysis 

• Analyze the data using patient specific masks 

• Model the hemodynamic response and generate a phantom fMRI dataset to validate the 

feature selection and classification system 

• Apply the fMRI analysis methodology to intracranial EEG and compare with perfusion 

fMRI localization 

4.4 Expected Contributions 
 

• A novel voxel-based methodology for mapping human epileptic networks through the 

analysis of ASL perfusion fMRI time series data 
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• A set of quantitative features from multiple domains for classifying neural activity as 

normal or epileptiform in temporal lobe epilepsy patients 

• A system for generating patient specific composite features for discrimination between 

epileptic and normal brain voxels in ASL perfusion images 

• A better understanding of the temporal dynamics of cerebral blood flow in epilepsy 

patients versus healthy controls 

4.5 Facilities Needed 

The computing facilities available for conducting the proposed research include a PC in 

the Intelligent Control Systems Laboratory with a 3GHz Intel Pentium 4 processor, 1 GB of 

RAM, and a 230 GB hard drive and a laptop with a 2 GHz Pentium M processor, 1 GB of RAM, 

and a 70 GB hard drive.  Both machines are running Windows XP Professional and Matlab 7.0.  

These resources are sufficient for the proposed research.  

The BOLD and ASL perfusion fMRI data analyzed in the preliminary research came 

from our laboratory’s collaborators in the Center for Functional Neuroimaging at the University 

of Pennsylvania.  As the subjects and scanning time become available, they will collect 

additional ASL perfusion data from epilepsy patients and normal controls.  Intracranial EEG 

recordings may also be collected if the patients are implanted prior to surgery. 
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APPENDIX A:  GLOSSARY 
 
 
 

cerebral cortex:  the outermost layer of the cerebrum 

contralateral:  occurring on, affecting, or acting in conjunction with a part on the opposite side 
of the body 
 
focus:  a localized area of epilepsy or the chief site of a generalized disease or infection 
 
hemodynamic:  relating to the mechanics of blood circulation 

ictal: of, relating to, or caused by a sudden attack or seizure 

interictal:  occurring between seizures 

ipsilateral:  situated or appearing on or affecting the same side of the body 

perfusion:  the pumping of a fluid through an organ or tissue 

slice:  two-dimensional cross-section of a three-dimensional medical image 

subclinical seizure:  a seizure detected by EEG, which has no clinical correlate 
 
voxel:  the smallest distinguishable part of a three-dimensional image  
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