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We examine theoretically production of doubly strange hypernuclei, 16
Ξ− C and 16

ΛΛC, in double-charge ex-

change 16O(K −, K +) reactions using a distorted-wave impulse approximation. The inclusive K + spectrum
at the incident momentum pK − = 1.8 GeV/c and scattering angle θlab = 0◦ is estimated in a one-step
mechanism, K − p → K +Ξ− via Ξ− doorways caused by a Ξ− p–ΛΛ coupling. The calculated spectrum
in the Ξ− bound region indicates that the integrated cross sections are on the order of 7–12 nb/sr for
significant 1− excited states with 14C(0+,2+) ⊗ sΛ pΛ configurations in 16

ΛΛC via the doorway states of
the spin-stretched 15N(1/2−,3/2−) ⊗ sΞ− in 16

Ξ− C due to a high momentum transfer qΞ− � 400 MeV/c.
The Ξ− admixture probabilities of these states are on the order of 5–9%. However, populations of the
0+ ground state with 14C(0+) ⊗ s2

Λ and the 2+ excited state with 14C(2+) ⊗ s2
Λ are very small. The sen-

sitivity of the spectrum on the Ξ N–ΛΛ coupling strength enables us to extract the nature of Ξ N–ΛΛ

dynamics in nuclei, and the nuclear (K −, K +) reaction can extend our knowledge of the S = −2 world.
© 2010 Elsevier B.V. Open access under CC BY license. 
1. Introduction

It is important to understand properties of Ξ hypernuclei
whose states are regarded as “doorways” to access multi-strange-
ness systems as well as a two-body Ξ N–ΛΛ system, and it is
a significant step to extend study of strange nuclear matter in
hadron physics and astrophysics [1]. Because the Ξ hyperon in
nuclei has to undergo a strong Ξ N → ΛΛ decay, widths of Ξ hy-
pernuclear states give us a clue to a mechanism of Ξ absorption
processes in nuclei. A pioneer study of Ξ hypernuclei by Dover
and Gal [2] has found that a Ξ–nucleus potential has a well depth
of 24 ± 4 MeV in the real part on the analysis of old emulsion
data. However, our knowledge of these Ξ–nucleus systems is very
limited due to the lack of the experimental data [3]. Indeed, the
missing-mass spectra of a double-charge exchange (DCX) reaction
(K −, K +) on a 12C target have suggested the Ξ well depth of
14–16 MeV [4,5]. Several authors [6] have used the unsettled Ξ–
nucleus (optical) potentials such as VΞ = (−24)–(−14) MeV and
WΞ = (−6)–(−3) MeV in the Woods–Saxon potential to demon-
strate the Ξ− production spectra in the nuclear (K −, K +) reac-
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tions. There remains a full uncertainty about the nature of doubly
strange (S = −2) dynamics caused by the Ξ N and Ξ N–ΛΛ inter-
action in nuclei at the present stage. More experimental informa-
tion is earnestly desired.

The (K −, K +) reaction is one of the most promising ways of
studying doubly strange systems such as Ξ− hypernuclei for the
forthcoming J-PARC experiments [3]. One expects that these ex-
periments will confirm the existence of Ξ hypernuclei and estab-
lish properties of the Ξ–nucleus potential, e.g., binding energies
and widths. This reaction can also populate a ΛΛ hypernucleus
through a conventional DCX two-step mechanism as K − p → π0Λ

followed by π0 p → K +Λ [7–9], as shown in Fig. 1(a). Such an
inclusive K − spectrum in the ΛΛ bound region is rather clean
with much less background experimentally. Early theoretical pre-
dictions for two-step 16O(K −, K +) reactions at the incident mo-
mentum pK − = 1.1 GeV/c and scattering angle θlab = 0◦ [7,8]
have indicated small cross sections for the ΛΛ states, for exam-
ple, ∼ 0.1 nb/sr for the 0+(s2

Λ) ground state and ∼ 2 nb/sr for
the 2+(s2

Λ) excited state in 16
ΛΛC when we took 0.61 mb/sr and

0.32 mb/sr as the laboratory cross sections at 0◦ for K −p → π0Λ

and π0 p → K +Λ, respectively.
It should be noticed that another exotic production of ΛΛ

hypernuclei in the (K −, K +) reactions is a one-step mechanism,
K −p → K +Ξ− via Ξ− doorways caused by a Ξ− p → ΛΛ tran-
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Fig. 1. Diagrams for DCX nuclear (K −, K +) reactions: (a) a two-step mechanism,
K − p → π0Λ followed by π0 p → K +Λ, and (b) a one-step mechanism, K − p →
K +Ξ− via Ξ− doorways caused by the Ξ− p–ΛΛ coupling.

sition, as shown in Fig. 1(b). The Ξ N–ΛΛ coupling induces the
Ξ− admixture and the ΛΛ energy shift �BΛΛ ≡ BΛΛ( A

ΛΛZ) −
2BΛ(A−1

ΛZ) in the ΛΛ-nuclear states [10–14], and its coupling
strength is also related to widths of Ξ -hypernuclear states [15,
16]. For a viewpoint of S = −2 studies, it is very important to
extract quantitative information concerning the Ξ N–ΛΛ coupling
from spectroscopy of the Ξ and ΛΛ hypernuclei [17,18].

In this Letter, we study theoretically production of a doubly
strange hypernucleus in the DCX (K −, K +) reaction on an 16O
target at pK − = 1.8 GeV/c and θlab = 0◦ within a distorted-wave
impulse approximation (DWIA). Thus we focus on the ΛΛ–Ξ

spectrum for 16
ΛΛC and 16

Ξ− C in the Ξ− bound region consider-
ing the one-step mechanism, K − p → K +Ξ− via Ξ− doorways
caused by the Ξ N–ΛΛ coupling in the nuclear (K −, K +) reaction,
rather than the two-step mechanism as K − p → π0Λ followed by
π0 p → K +Λ [7,8]. These different mechanisms are well separated
kinematically. The forward cross section for the K − p → K +Ξ−
elementary process is at its maximum at pK − = 1.8–1.9 GeV/c,
whereas the K −p → π0Λ reaction at pK − = 1.1 GeV/c leads
to the maximal cross section for the π0 p → K +Λ process. The
present study is the first attempt to evaluate a production spec-
trum of the ΛΛ–Ξ hypernucleus via the Ξ N–ΛΛ coupling from
the inclusive (K −, K +) reaction, and to extract the Ξ− admixture
probability in the ΛΛ hypernucleus from the spectrum. We also
discuss a contribution of the two-step processes in the (K −, K +)
reactions within the eikonal approximation.

2. Calculations

Let us consider the DCX (K −, K +) reaction on the 16O target at
1.8 GeV/c within a DWIA and examine the production cross sec-
tions and wave functions of the doubly strange hypernucleus. To
fully describe the one-step process via Ξ− doorways, as shown in
Fig. 1(b), we perform nuclear ΛΛ–Ξ coupled-channel calculations
[13,14], which are assumed to effectively represent the coupling
nature in omitting other ΛΣ and ΣΣ channels for simplicity. Here
we employ a multichannel coupled wave function of the ΛΛ–Ξ

nuclear state for a total spin J B within a weak coupling basis. It is
written as
∣∣Ψ J B

( 16
ΛΛ–Ξ C

)〉
=

∑
J J ′′ j1 j2

[[
Φ J

(14C
)
,ϕ

(Λ)
j1

(rΛ1)
]

J ′′ ,ϕ
(Λ)
j2

(rΛ2)
]

J B

+
∑

J J ′ jp j3

[
Φ J ′

(15N
)
,ϕ

(Ξ−)
j3

(rΞ)
]

J B
(1)

with Φ J ′ (15N) = A[Φ J (
14C),ϕ

(p)

jp
(r p)] J ′ , where rΛ1 (rp) denotes

the relative coordinate between the 14C core-nucleus and the
Λ (proton), and rΛ2 (rΞ ) denotes the relative coordinate be-
tween the center of mass of the 14C–Λ (15N) subsystem and

the Λ (Ξ−). Thus ϕ
(Λ)
j1,2

, ϕ
(Ξ−)
j3

and ϕ
(p)

jp
describe the relative

wave functions of shell model states (that occupy j1,2, j3 and
jp orbits) for the Λ, Ξ− and proton, respectively; Φ J (

14C) is a
wave function of the 14C core-nucleus state, and A is the anti-
symmetrized operator for nucleons. The energy difference between
15N + Ξ− and 14C + Λ + Λ channels is �M = M(15N) + mΞ− −
M(14C) − 2mΛ = 18.4 MeV, where M(15N), M(14C), mΞ− and mΛ

are masses of the 15N nucleus, the 14C nucleus, the Ξ− and Λ

hyperons, respectively. We take the 15N core-nucleus states with
Jπ = 1/2−(g.s.) and 3/2−(6.32 MeV), and the 14C core-nucleus
states with Jπ = 0+(g.s.) and 2+(7.01 MeV) that are given in
(0p−1

1/20p−1
1/2)0+ , (0p−1

3/20p−1
1/2)2+ and (0p−1

3/20p−1
3/2)0+,2+ configura-

tions on 16O(g.s.) [7,8]. Because we assume only natural-parity
π = (−1) J B states via Ξ− doorways that are selectively formed
by non-spin-flip processes in the forward K −p → K +Ξ− reaction,
we consider a spin S = 0, ΛΛ pair in the hypernucleus. If the ΛΛ

component is dominant in a bound state, we can identify it as a
state of the ΛΛ hypernucleus 16

ΛΛC, in which the Ξ− admixture
probability can be estimated by

PΞ− =
∑
jp j3

〈
ϕ

(p)

jp
ϕ

(Ξ−)
j3

∣∣ϕ(p)

jp
ϕ

(Ξ−)
j3

〉
, (2)

under the normalization of∑
j1 j2

〈
ϕ

(Λ)
j1

ϕ
(Λ)
j2

∣∣ϕ(Λ)
j1

ϕ
(Λ)
j2

〉 + ∑
jp j3

〈
ϕ

(p)

jp
ϕ

(Ξ−)
j3

∣∣ϕ(p)

jp
ϕ

(Ξ−)
j3

〉 = 1.

After we set up the 15
ΛC and 15N configurations in our model

space with Eq. (1), we calculate the wave functions of ϕ
(Λ)
j2

(rΛ2 )

and ϕ
(Ξ−)
j3

(rΞ) taking into account their channel coupling. Thus,
the complete Green’s function G(ω) [19] describes all informa-
tion concerning (15

ΛC⊗Λ)+(15N⊗Ξ−) coupled-channel dynamics,
as a function of the energy transfer ω. It is numerically obtained
as a solution of the N-channels radial coupled equations with a
hyperon–nucleus potential U [20,21], which is written in an ab-
breviated notation as

G(ω) = G(0)(ω) + G(0)(ω)U G(ω) (3)

with

G(ω) =
(

GΛ(ω) G X (ω)

G X (ω) GΞ(ω)

)
, U =

(
UΛ U X

U X UΞ

)
, (4)

where G(0)(ω) is a free Green’s function. In our calculations, for
example, we deal with N = 28 for the JπB = 1− state. The nuclear
optical potentials U Y (Y = Ξ or Λ) can be written as

U Y (r) = V Y f (r, R,a) + iW Y f
(
r, R ′,a′) + iW (D)

Y g
(
r, R ′,a′), (5)

where f is the Woods–Saxon (WS) form, f (r, R,a) = [1 + exp((r −
R)/a)]−1, and g is the derivative of the WS form, g(r, R ′,a′) =
−4a′(d/dr) f (r, R ′,a′). The spin–orbit potentials are neglected. In
15N–Ξ− channels, we assume the strength parameter of VΞ =
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−24 or −14 MeV with a = 0.6 fm and R = 1.10(A − 1)1/3 =
2.71 fm in UΞ(r) [2,5,6], taking into account the Coulomb poten-
tial with the nuclear finite size RC = 1.25A1/3 = 3.15 fm [22]. The
spreading imaginary potential in Eq. (5), Im U Y , expresses compli-
cated excited states via Ξ−N → ΛΛ conversion processes in 16

Ξ− C

or 16
ΛΛC above the 15

ΛΛC + n threshold at 8.2 MeV, as a function of
the excitation energy Eex measured from an energy of the 16

ΛΛC
ground state, as often used in nuclear optical models. Since we
have no criterion for a choice of WΞ or W (D)

Ξ in the limited ex-
perimental data, we adjust appropriately the strength parameter
of WΞ in the WS-type to give widths of Ξ− quasibound states
in recent calculations [5,6,23]. In 14C–ΛΛ channels, we should use
a 15

ΛC–Λ potential, which can be constructed in folded potential
models [24]:

UΛ(r) =
∫

ρ J ′′(rΛ)
[
UCΛ

(|r + λΛrΛ|)

+ VΛΛ

(|r − νΛrΛ|)]drΛ, (6)

where ρ J ′′ (rΛ) = ∑
j1m1

〈 J M j1m1| J ′′M ′′〉2|ϕ(Λ)
j1

(rΛ)|2 and λΛ =
1 − νΛ = mΛ/(M(14C) + mΛ). UCΛ and VΛΛ denote an optical
potential for 14C–Λ as given in Eq. (5) and a ΛΛ residual in-
teraction, respectively. Here we neglected VΛΛ for simplicity. The
real part of UCΛ leads to BΛ = 12.2 MeV for the (0sΛ) state and
BΛ = 1.6 MeV for the (0pΛ) state in 15

ΛC [25], and its imaginary
part exhibits a flux loss of the wave functions through the core
excitations of 14C∗ . We assume WΛ � 1

4 W N and W (D)
Λ � 1

4 W (D)
N

where parameters of W N and W (D)
N for nucleon were obtained in

Ref. [26] because the well depth of the imaginary potential for Λ

is by a factor of 4 weaker than that for nucleon in g-matrix calcu-
lations [27].

The ΛΛ–Ξ coupling potential U X in off-diagonal parts of U
is the most interesting object in this calculation [10–16]. It can
be obtained by a two-body Ξ N–ΛΛ potential vΞ N,ΛΛ(r′, r) with
the 1 S0, isospin T = 0 state. Here we use a zero-range interaction
vΞ N,ΛΛ(r′, r) = v0

Ξ N,ΛΛδS,0δ(r′ − r) in a real potential for sim-

plicity, where v0
Ξ N,ΛΛ is the strength parameter that should be

connected with volume integral
∫

vΞ N,ΛΛ(r)dr = v0
Ξ N,ΛΛ [13,14,

16]. Thus the matrix elements can be easily estimated by use of
Racah algebra [29]:

U X (r) = 〈[
Φ J ′

(15
N
) ⊗ Y (Ξ−)

j′�′s′ (r̂)
]

J B

∣∣∑
i

vΞ N,ΛΛ

(
νir

′
i, r

)

× ∣∣[[Φ J
(14

C
)
,ϕ

(Λ)
j1

]
J ′′ ⊗ Y (Λ)

j�s (r̂)
]

J B

〉

=
∑
LSK

√
1/2 v0

Ξ N,ΛΛδS,0C J B
LSK

(
J ′ J ′′)F J ′ J ′′

LSK (r), (7)

where Y j�s = [Y� ⊗ X 1
2
] j is a spin–orbit function and C J B

LSK( J ′ J ′′)
is a purely geometrical factor [29]; F J ′ J ′′

LSK (r) is the nuclear form
factor including a recoupling coefficient of U ( J j1 J ′′K ; J ′ jp) [16],
a parentage coefficient for proton removal from 15N(1/2−,3/2−)

[30] and the center-of-mass correction of a factor
√

A/(A − 1) [31].
The factor

√
1/2 comes from the procedure handling a transition

between pΞ− and ΛΛ states in the nucleus.
The inclusive K + double-differential laboratory cross section

of the ΛΛ–Ξ production in the nuclear (K −, K +) reaction can
be written within the DWIA [32,33] using the Green’s function
method [19]. In the one-step mechanism, K − p → K +Ξ− via Ξ−
doorways, it is given [21] as
(
d2σ

dΩK dE K

)
lab

= β
1

[ J A]
∑
Mz

∑
α′α

(
− 1

π

)

× Im

[∫
dr′ dr F α′†

Ξ

(
r′)Gα′α

Ξ

(
ω, r′, r

)
F α

Ξ (r)

]

(8)

for the target with a spin J A and its z-component Mz , where
[ J A] = 2 J A + 1, and a kinematical factor β [34] that expresses
the translation from the two-body K −–p laboratory system to the
K −– 16O laboratory system [2]. The production amplitude F α

Ξ is

F α
Ξ (r) = f̄ K − p→K +Ξ−χ

(−)∗
pK+

(
MC

MB
r
)
χ

(+)
pK−

(
MC

M A
r
)

×〈α|ψ̂p(r)|Ψ J A Mz 〉, (9)

where f̄ K − p→K +Ξ− is a Fermi-averaged amplitude for the K − p →
K +Ξ− reaction in nuclear medium [2], and χ

(−)
pK+ and χ

(+)
pK− are

the distorted waves for outgoing K + and incoming K − mesons,
respectively; the factors of MC /MB and MC /M A take into account
the recoil effects, where M A , MB and MC are masses of the target,
the final state and the core-nucleus, respectively. 〈α|ψ̂p|Ψ J A Mz 〉 is a
hole-state wave function for a struck proton in the target, where α
denotes the complete set of eigenstates for the system. It should be
recognized that the ΛΛ–Ξ coupled-channel Green’s function with
the spreading potential provides an advantage of estimating con-
tributions from sources both as ΛΛ components in Ξ−–nucleus
eigenstates [16] and as Ξ− p → ΛΛ quasi-scattering processes in
the nucleus [15].

Because the momentum transfer is very high in the nuclear
(K −, K +) reaction at 1.8 GeV/c, i.e., qΞ− � 360–430 MeV/c, the
distorted waves for outgoing K + and incoming K − in Eq. (9) are
calculated with the help of the eikonal approximation [32,35]. As
the distortion parameters, we use total cross sections of σK −N =
28.9 mb for K −N scattering and σK +N = 19.4 mb for K +N scatter-
ing [6], and αK −N = αK +N = 0. We take 35 μb/sr as the laboratory
cross section of dσ/dΩ = ᾱ| f̄ K − p→K +Ξ− |2 including the kinemat-
ical factor ᾱ [9,5]. For the target nucleus 16O with JπA = 0+ , we
assume the wave functions for the proton hole-states in the rel-
ative coordinate, which are calculated with central (WS-type) and
spin–orbit potentials [22], by fitting to the charge rms radius of
2.72 fm [36]. For the energies (widths) for proton-hole states, we
input 12.1 (0.0), 18.4 (2.5) and 36 (10) MeV for 0p−1

1/2, 0p−1
3/2 and

0s−1
1/2 states, respectively.

Three parameters, VΞ , WΞ and v0
Ξ N,ΛΛ , are very important

for calculating the inclusive spectra with the one-step mechanism.
These parameters are strongly connected each other for the shape
of the spectrum and its magnitude, as well as for the Ξ− bind-
ing energies and widths of the Ξ− states. Several authors [10,16,
14] investigated the effects of the Ξ N–ΛΛ coupling in light nuclei
evaluating the volume integrals for kF -dependent Ξ N–ΛΛ effec-
tive interactions based on Nijmegen potentials [28], in which these
values are strongly model dependent; for example, 250.9, 370.2,
501.5, 582.1 and 873.9 MeV fm3 for NHC-D, NSC97e, NSC04a, NHC-
F and NSC04d potentials (kF = 1.0 fm−1), respectively [14,28]. The
Ξ− p → ΛΛ conversion cross section of (vσ)Ξ− p→ΛΛ � 7.9 mb
also yields to be about 544 MeV fm3 [16]. To see the depen-
dence of the spectrum on the Ξ N–ΛΛ coupling strength, here, we
choose typical values of v0

Ξ N,ΛΛ = 250 and 500 MeV, which ap-
proximate the volume integrals of NHC-D and NSC04a, respectively.
We take the spreading potential of Im UΞ to be WΞ � −3 MeV
at the 15N + Ξ− threshold [5,6,14,18]. It should be noticed that
this spreading potential expresses nuclear core breakup processes
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Fig. 2. Calculated inclusive ΛΛ–Ξ spectra by the one-step mechanism in the
16O(K −, K +) reaction at 1.8 GeV/c (0◦), with a detector resolution of 1.5 MeV
FWHM; (a) VΞ = −24 or −14 MeV without the ΛΛ–Ξ coupling potential. The Ξ

conversion decay occurs above the 15
ΛΛC + n threshold at ω = 360.4 MeV; (b) VΞ =

−14 MeV with the ΛΛ–Ξ coupling potential obtained by v0
Ξ N,ΛΛ = 0, 250 and

500 MeV.

caused by the Ξ− p → ΛΛ conversion in the 15N nucleus, and its
effect cannot be involved in U X .

3. Results and discussion

Now let us discuss the inclusive spectrum in the 16O(K −, K +)

reaction at 1.8 GeV/c (0◦) in order to examine the dependence of
the spectrum on the parameters of VΞ and v0

Ξ N,ΛΛ . We consider
contributions of the ΛΛ–Ξ nuclear bound and resonance states to
the Ξ− p → ΛΛ conversion processes in the Ξ− bound region.

In Fig. 2(a), we show the calculated spectra in the Ξ− bound
region without the ΛΛ–Ξ coupling potential when we use VΞ =
−24 MeV or −14 MeV with the Coulomb potential. The calculated
spectra are in agreement with the spectra obtained by previous
works [6]. In the case of VΞ = −24 MeV, we find that a broad
peak of the [15N(1/2−) ⊗ sΞ−]1− quasibound state in 16

Ξ− C is lo-
cated at BΞ− = 13.4 MeV with a sizable width of Γ = 3.5 MeV,
and a clear peak of the [15N(1/2−) ⊗ pΞ−]2+ quasibound state at
BΞ− = 3.7 MeV with Γ = 3.1 MeV. Integrated cross sections indi-
cate dσ(0◦)/dΩ � 28 nb/sr for the 1− state and 77 nb/sr for the
2+ state in 16
Ξ− C. In the case of VΞ = −14 MeV, which is favored in

recent calculations [6,13,14,18], we have the [15N(1/2−) ⊗ sΞ−]1−
state at BΞ− = 6.8 MeV with Γ = 3.8 MeV and the [15N(1/2−) ⊗
pΞ−]2+ at BΞ− = 0.5 MeV with Γ = 1.1 MeV. The integrated
cross sections indicate dσ(0◦)/dΩ � 6 nb/sr for the 1− state and
9 nb/sr for the 2+ state. Note that the Ξ− p → ΛΛ conversion
processes that can be described by the absorption potential Im UΞ ,
must appear above the 15

ΛΛC +n decay threshold at ω = 360.4 MeV
(which corresponds to BΛΛ = 16.7 MeV). We confirm that no clear
signal of the Ξ− bound state is measured if VΞ is sallow such as
−VΞ � 14 MeV and/or WΞ is sizably absorptive (−WΞ � 3 MeV
at the 15N + Ξ− threshold) in UΞ . Nevertheless, the production
of these Ξ− states as well as Ξ− states coupled to a 15N(3/2−)

nucleus is essential in this model because these states act as door-
ways when we consider the ΛΛ states formed in the one-step
mechanism. We also expect to extract properties of the Ξ–nucleus
potential such as VΞ and WΞ from the Ξ− continuum spectra in
the (K −, K +) reactions on nuclear targets, as already discussed for
studies of the Σ−–nucleus potential in nuclear (π−, K +) reactions
[37,38].

On the other hand, the ΛΛ–Ξ coupling plays an important role
in making a production of the ΛΛ states via Ξ− doorways be-
low the 15N + Ξ− threshold. The positions of their peaks must be
slightly shifted downward by the energy shifts �BΛΛ due to the
coupling potential in Eq. (7). When v0

Ξ N,ΛΛ = 500 MeV (250 MeV),
we obtain �BΛΛ = 1.17 MeV (0.15 MeV) and the Ξ− admixture
probability PΞ− = 5.24% (0.87%) in the [14C(0+)⊗ sΛ pΛ]1− excited
state and �BΛΛ = 0.38 MeV (0.09 MeV) and PΞ− = 0.58% (0.14%)
in the [14C(0+) ⊗ s2

Λ]0+ ground state. The value of PΞ− in the 1−
state is by a factor of 6–9 as large as that in the 0+ state. These
values are strongly connected with the magnitude of the peak for
the ΛΛ state in the spectrum.

In Fig. 2(b), we show the calculated spectra with the ΛΛ–Ξ

coupling potential when VΞ = −14 MeV. We recognize that the
shape of these spectra is quite sensitive to the value of v0

Ξ N,ΛΛ ,
and it is obvious that no Ξ N–ΛΛ coupling cannot describe the
spectrum of the ΛΛ states below the 14C + Λ + Λ threshold. The
calculated spectrum for v0

Ξ N,ΛΛ = 500 MeV has a fine structure

of the ΛΛ excited states in 16
ΛΛC. We find that significant peaks

of the 1− excited states with 14C(0+) ⊗ sΛ pΛ at ω = 362.1 MeV
(BΛΛ = 15.1 MeV) and 14C(2+)⊗ sΛ pΛ at ω = 368.5 MeV (BΛΛ =
8.7 MeV), and small peaks of the 2+ excited states with 14C(0+)⊗
p2

Λ at ω = 373.8 MeV (BΛΛ = 3.4 MeV) and 14C(2+) ⊗ p2
Λ at

ω = 380.4 MeV (BΛΛ = −3.2 MeV). This result arises from the
fact that the high momentum transfer qΞ− � 400 MeV/c leads to
a preferential population of the spin-stretched Ξ− doorways states
followed by the [15N(1/2−,3/2−) ⊗ sΞ−]1− → [14C(0+,2+) ⊗
sΛ pΛ]1− and [15N(1/2−,3/2−) ⊗ pΞ−]2+ → [14C(0+,2+) ⊗ p2

Λ]2+
transitions, to which a sum of their continuum states may con-
tribute predominately in the (K −, K +) reactions. Fig. 3 also dis-
plays partial-wave decomposition of the calculated inclusive spec-
trum for 16

ΛΛC in the ΛΛ bound region when VΞ = −14 MeV and
v0

Ξ N,ΛΛ = 500 MeV. The integrated cross sections at θlab = 0◦ for

the 1− excited states with 14C(0+) ⊗ sΛ pΛ and 14C(2+) ⊗ sΛ pΛ

are respectively

dσ

dΩL

[ 16
ΛΛC

(
1−)] � 7 nb/sr and 12 nb/sr, (10)

where the Ξ− admixture probabilities of these states amount to
PΞ− = 5.2% and 8.8%, respectively. It should be noticed that the
cross sections are on the same order of magnitude as those for the
1− and 2+ quasibound states that are located at BΞ− = 6.8 MeV
and 0.5 MeV, respectively, in the 16− C hypernucleus. Therefore,
Ξ
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Fig. 3. Partial-wave decomposition of the calculated inclusive spectrum by the one-
step mechanism near the 14C + Λ + Λ threshold in the 16O(K −, K +) reaction
at 1.8 GeV/c (0◦). VΞ = −14 MeV and v0

Ξ N,ΛΛ = 500 MeV were used. The la-

bels 0+(s2
Λ), 1−(sΛ pΛ) and 2+(p2

Λ) denote the Jπ ΛΛ nuclear states of (0sΛ)2,
(0sΛ)(0pΛ) and (0pΛ)2 coupled with 14C(0+), respectively. The labels 2+(s2

Λ),
1−(2+ ⊗ sΛ pΛ) and 2+(2+ ⊗ p2

Λ) denote the states of (0sΛ)2, (0sΛ)(0pΛ) and
(0pΛ)2 coupled with 14C(2+), respectively.

such ΛΛ excited states below the 14C + Λ + Λ threshold will be
measured experimentally at the J-PARC facilities [3].

On the other hand, it is extremely difficult to populate the
0+ ground state with 14C(0+) ⊗ s2

Λ at ω � 352.3 MeV (BΛΛ �
24.9 MeV) and also the 2+ excited state with 14C(2+) ⊗ s2

Λ at
ω � 359.6 MeV (BΛΛ � 17.5 MeV) in the one-step mechanism
via Ξ− doorways in the (K −, K +) reactions. The high momen-
tum transfer of qΞ � 400 MeV/c necessarily leads to the non-
observability with �L = 0. Thus the integrated cross section of
the 0+ state is found to be about 0.02 nb/sr, of which the q de-
pendence is approximately governed by a factor of exp(− 1

2 (b̃qΞ)2)

where a size parameter b̃ = 1.84 fm. There is no production in the
2+ state with 14C(2+) ⊗ s2

Λ under the angular-momentum conser-
vation in the 16O(K −, K +) reactions by the one-step mechanism.
The contribution of these states to the ΛΛ spectrum in the one-
step mechanism is completely different from that in the two-step
mechanism as obtained in Refs. [7,8].

In the (K −, K +) reaction, ΛΛ hypernuclear states can be also
populated by the two-step mechanism, K −p → π0Λ followed by
π0 p → K +Λ [7–9], as shown in Fig. 1(a). Following the procedure
by Dover [7,9], a crude estimate can be obtained for the contribu-
tion of this two-step processes in the eikonal approximation using
a harmonic oscillator model. The cross section at 0◦ for quasielastic
ΛΛ production at pK − = 1.8 GeV/c in the two-step mechanism,
which is summed over all final state, is given [9] as

∑
f

(dσ
(2)

f

dΩL

)
0◦

≈ 2πξ

p2
π

〈
1

r2

〉(
α

dσ

dΩL

)K − p→π0Λ

0◦

×
(
α

dσ

dΩL

)π0 p→K +Λ

0◦
N pp

eff , (11)

where ξ = 0.022–0.019 mb−1 is a constant nature of the angular
distributions of the two elementary processes, pπ � 1.68 GeV/c
is the intermediate pion momentum, and 〈1/r2〉 � 0.028 mb−1

is the mean inverse-square radial separation of the proton pair.
N pp � 1 is the effective number of proton pairs including the nu-
eff
clear distortion effects [7]. The elementary laboratory cross section
(αdσ/dΩL)0◦ is estimated to be 1.57–1.26 mb/sr for K − p → π0Λ

and 0.070–0.067 mb/sr for π0 p → K +Λ depending on the nuclear
medium corrections. This yields

∑
f

(dσ
(2)

f

dΩL

)
0◦

� 0.06–0.04 μb/sr, (12)

which is half smaller than ∼ 0.14 μb/sr at 1.1 GeV/c. Consider-
ing a high momentum transfer q � 400 MeV/c in the (K −, K +)
reactions by comparison with the (π+, K +) reaction [39], we ex-
pect that the production probability for the ΛΛ bound states does
not exceed 1% in the quasielastic ΛΛ production, so that an es-
timate of the ΛΛ hypernucleus in the two-step mechanism may
be on the order of 0.1–1 nb/sr. This cross section is smaller than
the cross section for the ΛΛ 1− states we mentioned above in the
one-step mechanism. Consequently, we believe that the one-step
mechanism acts in a dominant process in the (K −, K +) reaction
at 1.8 GeV/c (0◦) when v0

Ξ N,ΛΛ = 400–600 MeV. This implies that
the (K −, K +) spectrum provides valuable information concerning
Ξ N–ΛΛ dynamics in the S = −2 systems such as ΛΛ and Ξ hy-
pernuclei, which are often discussed in a full coupling scheme [40].

4. Summary and conclusion

We have examined theoretically production of doubly strange
hypernuclei in the DCX 16O(K −, K +) reaction at 1.8 GeV/c within
DWIA calculations using coupled-channel Green’s functions. We
have shown that the Ξ− admixture in the ΛΛ hypernuclei plays
an essential role in producing the ΛΛ states in the (K −, K +) reac-
tion.

In conclusion, the calculated spectrum for the 16
Ξ− C and 16

ΛΛC
hypernuclei in the one-step mechanism K − p → K +Ξ− via Ξ−
doorways predicts promising peaks of the ΛΛ bound and excited
states in the 16O(K −, K +) reactions at 1.8 GeV/c (0◦). It has been
shown that the integrated cross sections for the significant 1− ex-
cited states in 16

ΛΛC are on the order of 7–12 nb/sr depending
on the Ξ N–ΛΛ coupling strength and also the attraction in the
Ξ–nucleus potential. The Ξ− admixture probabilities are on the
order of 5–9%. The sensitivity to the potential parameters indicates
that the nuclear (K −, K +) reactions have a high ability for the
theoretical analysis of precise wave functions in the ΛΛ and Ξ

hypernuclei. New information on ΛΛ–Ξ dynamics in nuclei from
the (K −, K +) data at J-PARC facilities [3] will bring the S = −2
world development in nuclear physics.
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