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Abstract We present an inverse modeling procedure for the estimation of model parameters of sedi-
mentary basins subject to compaction driven by mechanical and geochemical processes. We consider a
sandstone basin whose dynamics are governed by a set of unknown key quantities. These include geophys-
ical and geochemical system attributes as well as pressure and temperature boundary conditions. We derive
a reduced (or surrogate) model of the system behavior based on generalized Polynomial Chaos Expansion
(gPCE) approximations, which are directly linked to the variance-based Sobol indices associated with the
selected uncertain model parameters. Parameter estimation is then performed within a Maximum Likeli-
hood (ML) framework. We then study the way the ML inversion procedure can benefit from the adoption of
anisotropic polynomial approximations (a-gPCE) in which the surrogate model is refined only with respect
to selected parameters according to an analysis of the nonlinearity of the input-output mapping, as quanti-
fied through the Sobol sensitivity indices. Results are illustrated for a one-dimensional setting involving
quartz cementation and mechanical compaction in sandstones. The reliability of gPCE and a-gPCE approxi-
mations in the context of the inverse modeling framework is assessed. The effects of (a) the strategy
employed to build the surrogate model, leading either to a gPCE or a-gPCE representation, and (b) the type
and quality of calibration data on the goodness of the parameter estimates is then explored.

1. Introduction

Interaction of sediment compaction processes with subsurface fluid flow has been studied in the presence
of a wide set of observed phenomena including compaction-driven brine and/or saltwater flow at deep
locations [Kreitler, 1989], transport of tracer concentrations in shallow sediments [Hurwitz et al., 2000; Bonne-
sen et al., 2009], buildup of fluid pressure [Jiao and Zheng, 1998; McPherson and Bredehoeft, 2001], hydrocar-
bon generation and migration [e.g., Tuncay and Ortoleva, 2004; Taylor et al., 2010], land subsidence due to
groundwater and/or hydrocarbons withdrawal [Gambolati et al., 1991, 2000; Hoffmann et al., 2003], and for-
mation of ore deposits [Wieck et al. 1995]. Evolutionary scales of compaction processes can range over sev-
eral orders of magnitude, mainly depending on the driving physical sources. For instance, land subsidence
is often caused by human over exploitation of subsurface resources and is observed on time intervals span-
ning decades. On the other hand, natural compaction phenomena, including mechanical and geochemical
processes taking place in sedimentary basins, are associated with geological time scales, i.e., millions of
years [Wangen, 2010]. Mechanical compaction is due to variations of effective stress caused by increased
load of overlying sediments after deposition. Stress change induces grain rearrangement and porosity
reduction with increasing depth. Geochemical compaction has also a marked influence on the evolution of
the porous matrix structure. Typical examples include quartz cementation in sandstones and smectite to
illite transformation in shales [see, e.g., Osborne and Swarbrick, 1999; Milliken, 2004; Taylor et al., 2010].

In this work, we focus on quartz cementation phenomena, which are key in sandstones. Natural compaction
processes in sedimentary basins take place on geological time scales, i.e., over millions of years (Ma), and
the sediment thickness is typically of the order of kilometers (km). Conversely, the critical physical and
chemical processes take place at the pore scale and are commonly analyzed through laboratory experi-
ments. A complete and rigorous model formulation which embodies the multiscale nature of the diagenetic
processes is still not available and simplified effective models are usually adopted. The nature of the rela-
tionship between porosity and stresses is usually rendered through empirical models [e.g., Schneider et al.,
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1994]. Issues related to quartz cementation, including the role of pressure and hydrocarbons in the precipi-
tation/dissolution process as well as the proper identification of the source of silica, are still largely debated
in the literature [e.g., Milliken, 2004; Taylor et al., 2010]. Although inhibition of quartz cementation due to
fluid overpressure has been observed at field scale [e.g., Osborne and Swarbrick, 1999], widely used quartz
cementation models rely on the assumption that (i) quartz precipitation is a temperature-driven reaction-
limiting factor [e.g., Oelkers et al., 1996] and (ii) dissolution of grains and quartz precipitation occur at the
same location, i.e., the source of quartz is local [e.g., Walderhaug, 1994, 1996; Lander and Walderhaug, 1999].
Moreover, outputs of basin compaction models are affected by uncertainty, mainly due to the lack of knowl-
edge on the appropriate conceptual and mathematical model and associated parameters. Since direct
measurements of model parameters are typically scarce, parameter estimation can be performed by condi-
tioning a given compaction model on measured state variables, such as temperature, heat flux, porosity,
pressure, and concentration profiles [Zhao and Lerche, 1993; Tuncay and Ortoleva, 2004; Beha et al., 2008;
Huvaz et al., 2005; Hurwitz et al., 2000].

Formaggia et al. [2013] recently presented a comprehensive simulation tool for the direct/forward modeling
of sandstones compaction in the presence of quartz cementation. The model enables one to perform a global
sensitivity analysis of the system states under uncertain mechanical and geochemical model parameters and
to obtain an efficient surrogate model of the compaction system. The surrogate model relies on a generalized
Polynomial Chaos Expansion (gPCE) approximation of the system states [Ghanem and Spanos, 1991; Xiu and
Karniadakis, 2002; Le Maitre and Knio, 2010] and is constructed through a sparse grid technique [Babuska et al.,
2010; Nobile et al., 2008; Xiu and Hestaven, 2005]. Due to its structure, the gPCE approximation of the model
outputs can be evaluated at any location in space and time and for any combination of values of the uncer-
tain parameters at a markedly reduced computational cost. As an additional benefit, mean, variance, and (var-
iance-based) Sobol sensitivity indices of target system states can be computed by simple algebraic
manipulation of the gPCE coefficients. Sobol sensitivity indices [Sobol, 2001] also provide a direct quantitative
measure of the influence of each uncertain parameter on the total variance of outputs of interest.

Here, we analyze the feasibility of estimating key parameters of a basin compaction model within an inverse
Maximum Likelihood (ML) framework [e.g., Carrera and Neuman, 1986], where the full system model is
replaced by its gPCE approximation. To this end, we set up an integrated methodology which combines (i)
a forward numerical solver of compaction processes, (ii) a model reduction technique which allows approxi-
mating the model output variables through their gPCE, and (iii) a ML-based model inversion methodology
to assimilate diverse types of information in a unique model calibration tool. The idea of accelerating the
solution of inverse problems through the use of polynomial approximations has been already discussed in
the subsurface hydrology literature. Examples of application of this technique include the analysis of (i) flow
and transport in two-dimensional [M€uller et al., 2011] and three-dimensional [Balakrishnan et al., 2003; Lin
and Tartakovsky, 2009; Laloy et al., 2013] heterogeneous porous media, (ii) unsaturated [Li et al., 2013;
Sochala and Le Maitre, 2013] and multiphase [Saad and Ghanem, 2009; Oladyshkin et al., 2013] flow prob-
lems, and (iii) passive and reactive solute transport in column experiments [Fajraoui et al., 2011, 2012; Zhang
et al., 2013; Ciriello et al., 2013]. Recent studies [e.g., Lin and Tartakovsky, 2009; Liao and Zhang, 2013] show
that gPCE may be inaccurate in the presence of nonlinear relationships between input parameters and out-
put variables. Liao and Zhang [2013] present an approach which allows overcoming this problem and apply
their methodology to two-phase flow and solute transport taking place in one-dimensional heterogeneous
and two-dimensional homogeneous systems.

A distinctive feature of our work is to demonstrate the reliability of gPCE-based approaches for the inverse
modeling of basins whose evolution occurs over significantly large space-time scales and is governed by
highly nonlinear equations. We also assess the impact of combining in a unique inverse modeling frame-
work data of diverse nature which can be made available at a site. An additional original element of our
study is the analysis of the way the ML inversion procedure can benefit from the adoption of anisotropic
polynomial approximations (a-gPCE), in which the surrogate model is refined only with respect to selected
parameters. The need for this refinement strategy is established according to an analysis of the nonlinearity
of the input-output mapping, as quantified through the Sobol sensitivity indices.

The paper is organized as follows: Sections 2 and 3 present an overview of the forward and inverse model-
ing techniques. Numerical results illustrating the application of the proposed methodologies are described
in section 4. Concluding remarks are then presented in section 5.
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2. Basin Compaction Modeling

In this section, we briefly summarize the theoretical and numerical tools for the analysis of mechanical and geo-
chemical compaction in a basin-scale model. Since evolutionary features of compacting sediments are mainly
evolving along the vertical direction, one-dimensional models of the type described in section 2.1 are often
employed and studied in the literature [e.g., Lander and Walderhaug, 1999; Hurwitz et al., 2000; Taylor et al., 2010].
In section 2.2, we describe the numerical methodologies employed to derive the gPCE and a-gPCE models.

2.1. Forward Basin Compaction Model
We consider a one-dimensional domain XðtÞ5½zbotðtÞ; ztopðtÞ� evolving with time, t, zbot(t), and ztop(t) being
the bottom and the top of the domain, respectively.

Mass conservation of fluid and solid phases in XðtÞ are, respectively, governed by

@ /ql
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1
@ /ulql
� �
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5ql (1)
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where / (–) is porosity, and ui (m s21) and qi (kg m23), respectively, indicate the velocity and the density of
i-phase (with i 5 s, l for the solid and fluid phase, respectively). The source terms qi (kg m23 s21) account for
processes associated with fluid (i 5 l, e.g., water released during transformation of clay mineral) and solid
(i 5 s, e.g., quartz precipitation) generation.

The Darcy flux, uD (m s21), is given by
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where p (Pa) is pore pressure, ml (Pa s) is fluid dynamic viscosity, g (m s22) is gravity, and K (m2) is permeabil-
ity. The latter is modeled as Kð/Þ510k1/2k2 [Wangen, 2010], where k1 and k2 are dimensionless fitting
parameters usually estimated through laboratory experiments.

Variation of porosity, d/, is caused by mechanical compaction, d/M, and by quartz precipitation, inducing
an increase of quartz volumetric fraction, d/Q, i.e., d/5d/M2d/Q. The rate of porosity change due to
mechanical compaction is given by [e.g., Schneider et al., 1994]

d/M

dt
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Here /0 is the initial porosity of the basin, /f is the minimum porosity value that can be attained by pure
mechanical compaction, b (Pa21) is the porous medium (uniaxial) vertical compressibility and rC (Pa) is the
effective stress, which is given by the difference between liquid pressure and total load.

Quartz precipitation is modeled as [e.g., Walderhaug, 1996]

d/Q

dt
5A

MQ

qQ
aq10bq T ; A5A0

/
/act

; T > TC (6)

where /Q is quartz volumetric fraction, MQ (kg mol21) and qQ (kg m23), respectively, are the molar mass
and the density of quartz, A0 (m21) and /act represent the specific surface and the actual porosity at the
onset of quartz precipitation, and aq (mol m22 s21) and bq (K21) are characteristic parameters of the system.
The reaction represented by (6) takes place only if the temperature, T, is larger than a critical value TC (usu-
ally assumed equal to 353 K). The main assumptions underlying equation (6) are (i) the source of quartz is
local, (ii) the rate limiting factor is precipitation, (iii) the reactive process is temperature activated, (iv) the
reaction rate does not depend on pressure, (v) a spherical growth of quartz grains takes place, and (vi) the
effects of clay coating are negligible. Albeit these assumptions may not be always verified [e.g., Osborne
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and Swarbrick, 1999], equation (6) is implemented in state-of-the-art basin evolution modeling tools [e.g.,
Taylor et al., 2010].

The temperature evolution is modeled by

CT
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dt
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where CT(/) 5 /ql cl1 12/ð Þqscs is the effective thermal capacity of the medium, KT(/) (W m21 K21) is the
thermal conductivity, ks and kl are solid and fluid specific conductivities, cl and cs (J K21 kg21) are the liquid
and solid specific thermal capacities, respectively. Equation (7) models heat exchanges due to fluid advec-
tion and solid displacement as well as thermal diffusion. Note that KT varies in space and time with /, even
in cases where ks and kl are constant. The nonlinear system of partial differential equations (1–7) is comple-
mented by appropriate initial and boundary conditions, as detailed in section 4.

In summary, the system (1)–(7) allows computing the full set of unknown state variables (fluid and solid phase
velocities, pressure, temperature, and porosity) describing the evolution of a one-dimensional sedimentary
basin in the presence of mechanical compaction and quartz precipitation. In the following, the system (1)–(7) is
solved through the numerical approach proposed by Formaggia et al. [2013]. The scheme follows a Lagrangian
perspective, where the computational mesh deforms under the effect of compaction and each cell follows the
time evolution of a fixed portion of solid material. We refer to Formaggia et al. [2013] for additional details.

2.2. Model Reduction Technique and Global Sensitivity Analysis
Inverse modeling (or history matching) typically requires solving the forward system model for several val-
ues of the unknown parameters. This step is usually computationally intensive. In the following, we alleviate
the computational burden by introducing a surrogate model of the full compaction system described by
equations (1)–(7) in the form of a polynomial approximation.

We collect the Np uncertain parameters, pn, in a vector p 2 RNp . Since no detailed information on geochemi-
cal compaction model parameters is typically available, each pn is assumed to be described by a uniform
distribution within the interval Cn5 pn;min; pn;max

� �
, so that p 2 C5C13C23 � � �3CNP . Any output of the full

compaction model can thus be seen as a function f ðpÞ : C! R. The generalized Polynomial Chaos expan-
sion [Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Le Maitre and Knio, 2010] consists in approximat-
ing f(p) by a linear combination of Q multivariate Legendre polynomials, wi pð Þ, i.e.,

f ðpÞ �
XQ

i51

aiwiðpÞ (8)

Here ai are real numbers called gPCE coefficients. Obviously, the accuracy of the approximation (8) increases
with the number of polynomials Q considered in the gPCE. Legendre polynomials are used because they
are orthonormal with respect to the uniform probability distribution assumed for pn [Xiu and Karniadakis,
2002]. Note that the methodology does not rely on any other specific property of these polynomials. Thus,
it can be applied for any distribution of pn, upon substituting the Legendre polynomials with the appropri-
ate family of orthonormal polynomials. The latter has been shown to exist for most of the distributions
which are employed to described commonly used random variables (such as uniform, Gaussian or exponen-
tial) with only a few exceptions [see, e.g., Ernst et al., 2012].

The Q polynomials (8) are usually selected by enforcing some constraints on the degree of the gPCE with
respect to each parameter pn. It is convenient to use a multi-index (or vector) notation. Thus, instead of
wiðpÞ, with i scalar index, we introduce a vector i with N components i5½i1; i2; . . . ; iN�, and a multivariate
Legendre polynomial, wiðpÞ; where the nth component of the vector, in, specifies the polynomial degree of
wiðpÞ with respect to pn. With this notation, (8) can be rewritten as

f ðpÞ �
X
i2K

aiwiðpÞ (9)

where K � NN is a user-defined set containing Q multi-indices, whose purpose is to specify which Legendre
polynomials enter in the gPCE expansion. For a fixed Q, different choices for K are feasible. Common
choices for K are
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K5fi 2 NN : max n51;2;...;N in � wg; for a given w 2 N (10)

K5 i 2 NN :
XN

n51

in � w

( )
; for a given w 2 N (11)

K5 i 2 NN :
XN

n51

in

wn
� 1

( )
; for a given set of values w1;w2; . . . ;wN 2 N (12)

In (10) and (11), w represents the maximum degree of the polynomial approximation with respect to each
parameter pn. The choice of K given by (10) (called ‘‘tensor product gPCE’’) is computationally impractical, as the
number of the coefficients ai to be computed grows exponentially with N, according to the formula
Q5ðw11ÞN . The approach based on (11) (called ‘‘total degree gPCE’’) markedly reduces this number, i.e.,
Q5ðN1wÞ!= N!w!ð Þ, while not compromising significantly the accuracy of the approximation [e.g., Ghanem and
Spanos, 1991; Le Maitre and Knio, 2010]. However, the maximum polynomial degree of the resulting gPCE is the
same with respect to each parameter, i.e., this formulation implicitly assumes that the same level of accuracy of
the surrogate model is needed with respect to each pn. Model (12) is more general and admits different maxi-
mum polynomial degrees, wn, for each parameter pn. In the following, we adopt the strategies described by the
sets (11) and (12), to construct the isotropic total degree gPCE and the anisotropic total degree gPCE, respec-
tively. Hereinafter, we refer to the former as ‘‘gPCE’’ and to the latter as ‘‘a-gPCE’’ for brevity.

The gPCE coefficients corresponding to the polynomials identified by the set K are defined by the following
multidimensional integrals

ai5
YN

n51

ðpn;max2pn;minÞ21
ð

C
f ðpÞwiðpÞdp (13)

These can be computed numerically by quadrature, least square approximation, or L2projection [Ghanem
and Spanos, 1991; Le Maitre and Knio, 2010]. In this work, we consider a two-steps procedure originally pro-
posed by Formaggia et al [2013], based on the so-called sparse-grid interpolation of f ðpÞ and summarized
in Appendix A. We remark that this step requires the evaluation of f ðpÞ, i.e., the solution of the full model,
for several values of the uncertain parameters. An analysis of the computational costs involved in this proce-
dure is provided in section 4.

Once the coefficients ai have been computed, one notes that the gPCE expansion (9) is a linear combination
of polynomials and can be evaluated very efficiently for any given p 2 C. Moreover, thanks to the orthonor-
mality of the Legendre polynomials, simple algebraic manipulations of the coefficients ai allow computing
mean, E½f �, and variance, V½f �, of f(p). Denoting by 0 the vector 05½0; 0; . . . ; 0� 2 NN, we have

E½f �5a0; V½f �5
X
i2NN

a2
i 2a2

0 �
X
i2K

a2
i 2a2

0 (14)

Equation (9) can be written as

f ðpÞ � a0w01
XN

n51

X
i2Pn

aiwiðpÞ1
XN

n51

XN

m5n

X
i2Pn;m

aiwiðpÞ1 � � � (15)

where Pn � K denotes the subset of K containing the all of the multi-indices i such that only the nth com-
ponent is nonzero, Pn;m � K denotes the subset of K containing the all the multi-indices i such that only
the nth and the mth components are nonzero and so on. The quantities

Sn5
X
i2Pn

a2
i

V½f �; Sn;m5
X

i2Pn;m

a2
i

V½f � (16)

are approximations of the so-called Sobol indices that can be used to perform a global sensitivity analysis
of the system outputs with respect to the input parameters [Sobol, 2001; Sudret 2007]. In particular, Sn is
called the principal Sobol index of the nth parameter, as it collects all contributions to the total variation of
the f ðpÞ which are only due to the nth parameter, pn. Therefore, it quantifies the actual need for an accurate
estimate of pn to reduce the uncertainty in the prediction of f(p). The total Sobol index ST

n is defined as
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ST
n5Sn1

X
k 6¼n

Sn;k1
X
k;j 6¼n

Sk;j;n1 � � � (17)

and includes Sn and all the joint terms where the nth parameter appears. Note that a parameter could be
associated with a small value of Sn and a large ST

n , denoting that while pn is not a relevant parameter per se,
it becomes important when coupled with other parameters.

In light of the above discussion, we propose a Sobol index based procedure to determine the coefficients
w1; . . . ;wN in (12). The basic idea is to rely, for each parameter, on Sobol indices to determine the number
of (nonlinear) polynomials to describe f ðpÞ by (9). To this purpose, we first build a coarse isotropic gPCE,
using (11) with a small value of w (e.g., w 5 2). We then compute the Sobol indices (16) and (17) and intro-
duce the quantities

SL
n5

a2
en

V½f � and SNL
n 5ST

n2SL
n (18)

where en is the nth canonical unit vector, i.e., en5½0; 0; . . . ; 0; 1; 0; . . . ; 0� 2 NN , SL
n is the Sobol index associ-

ated with the linear term including only parameter pn, and SNL
n represents the total contribution of nonlinear

terms involving pn, i.e., it indicates the degree of nonlinearity of the input-output mapping of f(p) with
respect to pn. We set a priori a minimum and a maximum polynomial degree wmin and wmax depending on
the envisioned complexity of f(p). Then, we set wn as

wn5max int wmax
SNL

n

max SNL
n

� �
" #

;wmin

 !
(19)

In other words, we (i) estimate SNL
n for each parameter, (ii) assign wmax and wmin to the two parameters,

respectively, characterized by the maximum and minimum value of SNL
n , and (iii) evaluate wn for the remain-

ing parameters by (19). Following this procedure, the nonlinear impact of each parameter based on SNL
n

drives the choice of the polynomial order wn.

As detailed above, the proposed methodology requires the construction of a preliminary coarse isotropic
gPCE. Alternative procedures to assess the optimal set, K, of polynomials based on a priori theoretical consid-
erations or making used of ad hoc algorithms have been proposed in the literature [e.g., Chkifa et al., 2013;
Beck et al., 2014]. However, these methods have been applied to analyze relatively simple phenomena gov-
erned by elliptic equations and their extension to complex processes, such as the problem we consider here,
is not straightforward. In section 4, we demonstrate the feasibility and accuracy of our proposed strategy.

3. Inverse Modeling

In this section, we describe the Maximum Likelihood (ML) approach we adopt to obtain ML estimates, p̂, of
p on the basis of porosity and/or temperature measurements. We set

/�i 5/i1e�/i
i51; . . . ;N/ (20)

T�j 5Tj1e�Tj
j51; . . . ;NT (21)

where /i and Tj, respectively, are the (unknown) true values of / and T at measurement points zi and zj at
time t, /�i and T�j are their (known) measured values affected by zero-mean measurement errors, e�/i

and e�Tj
,

which are also unknown. In practical basin-scale problems the time t at which measurements becomes
available usually coincides with the current observation time. Following the work of Carrera and Neuman
[1986], we assume (i) the measurement errors e�/i

and e�Tj
to be multivariate Gaussian, (ii) absence of spatial

correlation and cross correlation between measurement errors of / and T, and (iii) the covariance matrix of
measurements errors of / (C/) and T (CT) to be given by

C/5r2
/V/ CT 5r2

T VT (22)

where r2
/, and r2

T are typically unknown and can be estimated during the inversion. According to assump-
tion (ii) V/ and VT become diagonal matrices. In the examples presented in the following we assume
V/5VT 5I, i.e., the prior estimation errors of / and T are constant in space.
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The ML estimate p̂ is obtained by minimizing the negative log likelihood, NLL, criterion [e.g., Carrera and
Neuman, 1986]. When direct measurements of p are not available, as in typical geochemical compaction
settings, NLL is given by

NLL5
J/

r2
/

1
JT

r2
T

1N/ ln r2
/1NT ln r2

T 1ND ln ð2pÞ (23)

where ND5N/1NT . The quantities J/ and JT, respectively, are the porosity and the temperature residual
criteria (i.e., a weighted sum of the squared difference between simulated state variables and available
observations) defined as

J/5 U2U�ð Þ
0
V21

/ U2U�ð Þ (24)

JT 5 T2T�ð Þ
0
V21

T T2T�ð Þ (25)

where superscript
0

denotes transpose, U� and T* are, respectively, vectors of porosity and tempera-
ture measurements, U and T are vectors of porosity and temperature values evaluated according to
the forward model (1)–(7) at measurement locations. Note that U and T depend on the parameter
vector p. It is thus clear that minimization of NLL requires the solution of the system (1)–(7) for a
(typically large) number of p values. This task can be extremely demanding in terms of CPU time,
especially in the presence of strong model nonlinearities. Therefore, in this work we explore the fea-
sibility of replacing (1)–(7) by the gPCE and a-gPCE approximations of U and T, which can be effi-
ciently evaluated for any particular value of p. For convenience of notation, in the following we use
U and T to refer to the Polynomial Chaos Expansion solutions. Therefore, r2

/ and r2
T include both

measurement and model errors, the latter being due to the use of the gPCE or a-gPCE approxima-
tions. In case r2

/ and r2
T be known, minimization of (23) is equivalent to minimizing the general

least squares criterion

J5J/1kJT (26)

where k5r2
/=r

2
T .

In the following, we consider the general case where r2
/ and r2

T (and therefore k) are unknown a priori.

Riva et al. [2009, 2011] demonstrate that an accurate estimate of k can be obtained on the basis of the
Bayesian criterion KIC [Kashyap, 1982] defined as

KIC5NLL2NP ln 2p2ln jQj (27)

where jQj is the Cramer-Rao lower bound approximation of the determinant of the covariance matrix of the
estimation error, i.e.,

Q5r2
/ J

0
/V21

/ J/1kJ
0
T V21

T JT

� 	21
(28)

Jk (k 5 /, T) being the Jacobian matrix whose entries are the derivatives of the output state variables (/ or
T) with respect to the model parameters to be estimated. The ML estimates of r2

/ and r2
T are given by [Car-

rera and Neuman, 1986]

r̂2
/5

Jmin

ND
r̂2

T 5
r̂2

/

k
(29)

where Jmin is the minimum value of J. Note that evaluation of Jk in (28) requires multiple solutions of the for-
ward model. A key point of the Polynomial Chaos Expansion framework is that Jk can be obtained analyti-
cally, as / and T are approximated by polynomial functions.

In summary, we propose to obtain ML estimates of the parameters characterizing a basin-scale system sub-
ject to mechanical and geochemical compaction according to the following steps:

1. Derivation of the gPCE surrogate model. This step requires solving the compaction problem (1)–(7) at
each point of the sparse grid which is constructed in the parameter space.

2. Derivation of the a-gPCE surrogate model as described in section 2.2.
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3. Minimization of J for selected k values. Minimization of (26) is performed through the Nelder-Mead sim-
plex search method [Nelder and Mead, 1965; Lagarias et al., 1998]. In this work, we repeat this step using
six different initial parameters guesses, to avoid detecting local minima.

4. ML estimation of r2
/ and r2

T by (29) for each k.

5. Selection of k by minimizing (with respect to k) KIC in (27).

The proposed methodology relies on minimal prior information on the parameters p, consistent with the
assumed uniform probability density function (pdf) of model parameters. This choice is appropriate to char-
acterize basins undergoing mechanical and geochemical compaction processes, where information on sys-
tem parameters is usually not available due to large space-time scales characterizing the process.

4. Illustrative Example

4.1. Global Sensitivity Analysis and Model Reduction
We illustrate the proposed methodology on a synthetic setting representative of basin compaction. This
enables us to test the performance of the methodology described in sections 2 and 3. The total sedimenta-
tion time we consider is 200 Ma and the sedimentation rate is fixed to 30 m Ma21. Temperature and pres-
sure at the top of the basin are, respectively, set to 295 K and csea 3 hsea (i.e., the hydrostatic pressure
associated with the overlying sea depth, hsea, csea being the specific weight of seawater). For the purpose of
our example, we assume hsea to be constant in time, thus disregarding possible erosion phenomena. As a
consequence, the position of the top of the basin is constant with time. This, in turn, affects the temperature
evolution, since a constant temperature is imposed at ztop. The bottom of the basin is assumed to be imper-
meable (uD 5 0) and subject to a given a geothermal gradient, GT.

Formaggia et al. [2013] present a global sensitivity analysis of the system of equations (1–7). These authors
consider uncertainty associated with (i) quartz cementation kinetic, aq, (ii) relationship between porosity and
permeability, (iii) sea paleobathimetry, hsea, and (iv) vertical compressibility modulus, b. The (spatial) distribu-
tions of the resulting Sobol indices show that typical uncertainties on the three parameters b, aq, and hsea

bear the largest influence on porosity profiles, whereas temperature is mostly affected by aq and hsea. In this
study, we additionally consider uncertainty in the geothermal gradient, GT, which is expected to influence
both temperature and porosity. The lower and upper bounds of the intervals of variability of the four uncer-
tain parameters, pn;min; pn;max

� �
, are listed in Table 1. The selection of the width of these intervals has been

based on typical values observed in real basins under compaction processes [Walderhaug, 1994; Lander and
Walderhaug, 1999; Wangen, 2010]. The remaining parameters are assumed constant. We set: k1 5 14.15,
k2 5 16.94 [Wangen, 2010], ql5999 kg m23, qs52323 kg m23, ql50, i.e., no internal source of liquid phase is
considered. The limiting porosity for mechanical compaction is imposed to /f 5 0.28 [Wangen, 2010]. Charac-
teristic parameters for quartz cementation are set to MQ 5 6.001 kg mol21, qQ 5 2650 kg m23, /act 5 0.3,
TC 5 353 K, A0 5 104 m21, bq 5 273.172 K21 [Walderhaug, 1994; Lander and Walderhaug, 1999]. The thickness
of the basin at the initial simulation time is equal to 500 m and initial spatial distribution of porosity is
assigned through standard Athy’s law [e.g., Schneider et al., 1994] to include mechanical compaction.

Figure 1 depicts the vertical profiles of the average porosity and temperature at the final deposition time
evaluated from the first of (14). These results are obtained upon sampling the selected uncertain parame-
ters within the intervals listed in Table 1 and using a total degree gPCE (see (11)) at level w53. Uncertainty
intervals of width equal to 61 standard deviation (evaluated as the square root of the second of (14))
around the mean are also shown. Figure 2 depicts the vertical distribution of the Sobol indices associated

with the profiles of Figure 1. Here, gray
and black shaded areas indicate the linear
Sobol coefficients SL

n (18) and the principal
Sobol indices Sn (16), respectively, whereas
the dashed curves correspond to the total
Sobol indices ST

n (17). Figure 1a reveals that
the mean porosity reduces with a seem-
ingly exponential trend as z decreases until
z ffi 22000 m. This behavior is consistent

Table 1. Selected Uncertain Parameters and Associated A Priori Range
of Variability; pn,true Indicates the Parameter Values Used to Generate the
Reference Porosity and Temperature Fields

Parameter pn,min pn,max pn,true

b (Pa21) 4 3 1028 6 3 1028 5.8 3 1028

aq (mol m22 s21) 0.40 3 10218 3.56 3 10218 1.8 3 10218

GT (K m21) 2.0 3 1022 4.0 3 1022 3.1 3 1022

hsea (m) 400.0 600.0 520.0
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with equation (4) and is due to mechanical compaction, being strongly influenced by b and hsea, as shown
in Figure 2a. The dependence of porosity on b and hsea is almost linear, i.e., ST

n�SL
n. Quartz cementation

starts at about z � 22000 m where the Sobol indices related to aq and GT increase. The porosity rapidly
decreases for z<22000 m, where its variance tends to increase, as shown by Figure 1a. Due to geochemi-
cal compaction, we observe here porosity values which are smaller than /f. In this region, the porosity
depends nonlinearly on the parameters aq and GT (Figure 2a). Note also that at deep locations we observe
that ST

aq
> Saq and ST

GT
> SGT , implying that the mixed terms including aq and GT are relevant in the gPCE

approximation of porosity.

Mean temperature (Figure 1b) increases rapidly with depth until z � 22000 m. The temperature gradient
decreases when quartz cementation becomes relevant (z> 2000 m). This behavior is associated with the decrease
of accessible pore space, which influences the thermal conductivity of the medium at large burial depths. Figure
2b reveals that the temperature distribution is highly influenced by GT and hsea, as these parameters are strictly
related to the boundary conditions of the thermal problem. On the other hand, aq and especially b have only a
reduced influence. The dependence of temperature on all the parameters is almost linear at each depth.

Since nonlinear dependence has been observed between / and the parameters aq and GT, in the following
we derive an appropriate a-gPCE for / according to the methodology described in section 2. The nonlinear
term SNL

n (with n 5 aq, GT) depicted in Figure 2a is represented by the difference between ST
n and SL

n, as
described by (18). Since the indices SNL

n vary with z, we consider the following average value as a global indi-
cator of nonlinearity

�SNL
n 5

1
zmax2zmin

ðzmax

zmin

SNL
n dz (30)

where zmin and zmax are the minimum and maximum depths associated with locations at which data are
available. For our example, we obtain �SNL

GT
50:180 and �SNL

aq
50:117. Since �SNL

GT
> �SNL

aq
, the a-gPCE is computed

Figure 1. Vertical distribution of (a) mean porosity, m(/), and (b) mean temperature, m(T), (solid curves) at t 5 200 Ma. Intervals correspond-
ing to 61 standard deviation about the mean are also shown (dashed curves).

Figure 2. Sobol indices associated with (a) porosity and (b) temperature at t 5 200 Ma: ST
n (dashed curves), Sn (black-shaded area), and SL

n

(gray-shaded area).
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by setting wGT 5 wmax 5 6. Nonlinear effects due to hsea and b are negligible, and therefore we set whsea5

wb5 wmin 5 2. Following the criterion (19), we derive waq 54. When the a-gPCE is considered the spatial dis-
tributions of the Sobol indices are very similar to those displayed in Figure 2a, the only difference being
that small oscillations appearing in Figure 2a for z<23000 m are smoothed out (details not shown).

We note that while gPCE approximations might deteriorate with time [e.g., Gerritsma et al., 2010], Formaggia
et al. [2013] verified the accuracy of gPCE to describe the evolution of porosity and temperature within a
problem setting similar to the one we consider in this work. Additional evidences of the reliability of the
derived gPCE and a-gPCE approximations for this test case are provided in Appendix B.

4.2. Inversion Modeling and Results
In the following, we present the results of the proposed model inversion procedure. We first present the
selected data sets. Then, we investigate the impact of (i) the order w of the gPCE approximation, (ii) the use
of the a-gPCE procedure, and (iii) the quality and type of calibration data, on the model inversion results. The
impact of the available calibration data on the estimate of compaction-driven flow history is also quantified.

4.2.1. Calibration Data Sets
The reference porosity Utrue and temperature Ttrue fields have been generated by solving (1)–(7) with the
values pn 5 pn,true listed in Table 1. The vertical profiles Utrue and Ttrue computed at the final simulation time
(t 5 200 Ma) are shown in Figure 3. We sample Utrue and Ttrue at 41 equally spaced locations along the z axis
to obtain the information employed in the inversion procedure. In order to simulate measurements errors,
the calibration data U� and T* in (24) and (25) are obtained by superimposing to Utrue and Ttrue the white
Gaussian noises having standard deviations, respectively, equal to r/ and rT , whose values are listed in
Table 2. Note that when rf 5 0 (with f 5 / and/or T) the only source of error in the calibration data is due
to the gPCE or a-gPCE approximation of porosity and temperature profiles. The values of rf have been
selected to allow the ratios r/=D/true and rT=DTtrue to vary between 1% and 15% (see Table 2), where
D/true and DTtrue are the widths of the intervals comprised between the minimum and maximum
values displayed by Utrue and Ttrue along z. The data sets U�1, U�3, U�5, T�1,T�3, T�5 corresponding to the
minimum, intermediate, and maximum values of rf are also depicted in Figure 3. To summarize, in the
following we consider 17 calibration data sets: (a) one data set comprising only unperturbed porosity
values U�0; (b) one data set comprising only unperturbed temperature values T�0; (c) five data sets
including only perturbed porosity values U�i with i 5 1, . . .,5; (d) five data sets including only perturbed
temperature values T�i with i 5 1, . . .,5; and (e) five data sets comprising perturbed values of both
porosity and temperature (U�i ,T�i ) with i 5 1, . . .,5.

Figure 3. True (a) porosity and (b) temperature distributions along z at t 5 200 Ma (continuous curves). Perturbed data sets are reported
with symbols: U�1,T�1 (white circles), U�3,T�3 (gray circles), and U�5,T�5 (black circles).

Table 2. Standard Deviations, rf , and Normalized Standard Deviations, rf =Dftrue , Associated With the Calibration Data Sets

U�05Utrue U�1 U�2 U�3 U�4 U�5 T�05Ttrue T�1 T�2 T�3 T�4 T�5

rf 0 0.005 0.01 0.02 0.04 0.080 0 1.25 K 2.5 K 5 K 10 K 20 K
rf

Dftrue
(%) 0 0.96 1.92 3.84 7.68 15.36 0 0.93 1.86 3.72 7.44 14.88
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4.2.2. Analysis of gPCE and a-gPCE Approximations in the Inversion Procedure
Here we assess the impact of the choice of the Polynomial Chaos Expansion model on the inversion results.
We start by assuming that only unperturbed porosity, U�0, or temperature, T�0, data are available and com-
pare outputs of the inversion procedures obtained with various orders w of gPCE and a-gPCE approxima-
tions. With reference to the isotropic setting, we use the total degree gPCE at three levels, i.e., w 5 3, 4, 5.
Table 3 lists the values of NLL and KIC evaluated at the end of the inversion procedure. These results show
that the three isotropic gPCE surrogate models render very similar minima of NLL and KIC when U�0 is
employed. These minima then decrease with w when T�0 is employed. The a-gPCE enables us to obtain sig-
nificantly decreased values of NLL and KIC. The best surrogate model in terms of these two criteria appears
to be given by a-gPCE.

The accuracy of each set of parameter estimates is quantified by the ratios gpn
5p̂n=pn;true listed in Table

3. In general all quantities gpn
converge to unity as w increases. The a-gPCE renders results of the same

(or improved) quality as those provided by gPCE with w 5 5, while markedly decreasing the CPU time, as
also detailed in Table 3.

To assess the performance of the methodology in the presence of a perturbed data sets, Table 4 lists gpn

and the ratio between ML estimate of r/, r̂/, and its true value evaluated when U�3 (see Table 2) is
employed. Table 4 reports the outcomes obtained through gPCE with w 5 3, 4, 5, a-gPCE and the full model
(FM) (1)–(7). CPU times associated with each model inversion strategy are summarized in Figure 4. Numeri-
cal computations have been performed on 3.2 GHz Intel i7 processors. As noted earlier, the accuracy of
parameter estimates tends to increase with w (see Table 4). Figure 4 illustrates that the CPU time increases
by one order of magnitude moving from w 5 3 to w 5 5. On the other hand, the results of Table 4 show
that the a-gPCE yields results of accuracy comparable to that obtained with gPCE and w 5 5 or with the full
model, but requires a CPU time which is similar to that needed by gPCE with w 5 3 as shown in Figure 4.
Figure 4 also illustrates in graphical form the time associated with the construction of the polynomial chaos
approximations and the one required by the inversion step. Note that the CPU time needed to complete
the inversion step with a-gPCE and with the full model differ by more than two orders of magnitude. This
observation is relevant since the surrogate model can be constructed only once and can then be exploited
to perform several model calibrations using diverse (in terms of quality and quantity) data sets. This result
has important consequences when porosity and temperature data are both available, as multiple model cal-
ibrations are needed for the estimation of k, as detailed in section 3.

From the analyses performed in this section, we conclude that the a-gPCE technique is conducive to a marked
reduction of the computational cost, while maintaining the same level of accuracy of the full model. Therefore,

in the following subsections we perform the inversion
procedure upon relying only on the a-gPCE.

4.2.3. Assessment of Calibration Data Sets
Here we consider the effect of (i) measurement errors
and (ii) joint use of porosity and temperature meas-
urements on the inversion outcomes.

Figure 5 shows the variation of the coefficients gpn

as function of the type of calibration data and of

Table 3. Ratios gpn
5p̂n=pn;true Obtained Using U�0 or T�0 According to gPCE With w 5 3, 4, 5 and a-gPCE; Associated Minimum Values of

NLL, KIC as Well as CPU Time Are Also Listed

U�0 T�0

w 5 3 w 5 4 w 5 5 a-gPCE w 5 3 w 5 4 w 5 5 a-gPCE

gb 1.03 0.98 1.01 1.01 1.06 0.97 1.01 1.01
gaq

0.65 1.25 0.93 0.99 0.96 1.01 0.99 1.01
gGT

0.91 1.08 0.95 1.00 1.01 0.99 1.00 1.00
ghsea

0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00
NLL 2401.9 2395.7 2392.7 2490.6 2209.0 2264.7 2339.1 2475.8
KIC 2252.5 2246.6 2244.7 2333.8 247.1 2101.8 2163.8 2231.9
CPU (s) 7.7 3 103 2.2 3 104 5.3 3 104 7.6 3 103 7.8 3 103 2.2 3 104 5.4 3 104 7.6 3 103

Table 4. Ratios gpn
5p̂n=pn;true and r̂/=r/ , Obtained With

gPCE With w 5 3, 4, 5, a-gPCE and the Full Model (FM)a

w 5 3 w 5 4 w 5 5 a-gPCE FM

gb 1.14 1.20 1.10 1.12 1.20
gaq

1.82 0.65 0.76 1.30 0.91
gGT

0.91 1.08 0.96 0.98 1.08
ghsea

1.17 1.20 1.14 1.15 1.30
r̂/=r/ 1.15 1.11 1.15 1.15 1.14

aAll results are obtained on the basis of data set U�3.
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the standard deviations of the
measurement errors adopted
during the inversion. The left
column shows the results
obtained considering only
porosity data (U�i , with i 5 1,
. . ., 5), the central column
shows the corresponding
results derived with tempera-
ture data only (T�i ,with i 5 1,
. . .,5), and the right column
depicts the results obtained
on the basis of porosity and
temperature information
(U�i ,T�i , with i 5 1, . . ., 5). The

joint calibration data sets are characterized by a constant ratio r/=rT 50:004, which renders a constant
value of k, k5r2

/=r
2
T 51:631025. According to the procedure illustrated in section 3, we minimize the

objective function (26) for selected values of k comprised in the interval [1027, 1]. Figure 5 also depicts
the uncertainty intervals of width 6 r̂pn /pn;true, where r̂pn is given by the square root of the diagonal
terms of (28). Black dots in Figure 5 indicate cases where p̂i lie outside the range pn;min; pn;max

� �
defined in Table 1 and a-gPCE approximations of temperature and porosity are not valid. Gray circles
identify the cases where p̂n1r̂pn > pn;max or p̂n2r̂pn < pn;min . Figure 5 shows that estimates of GT and
hsea are generally accurate and affected by reduced uncertainty in the presence of temperature or
porosity measurements. On the other hand, estimates of aq and b are more accurate upon relying on
porosity rather than on temperature data (compare Figures 5a, d against Figures 5b and 5e). This is

Figure 4. CPU time required for ML parameter estimation through data set U�3 using gPCE,
a-gPCE and the full model (FM). Gray and black areas indicate CPU time needed for the
inversion procedure and to construct the surrogate model, respectively.

Figure 5. Normalized ML estimates of model parameters (a–c) gb , (d–f) gaq
, (g–i) gGT

, (j–l) ghsea
versus r/ (bottom horizontal axes) and/or

rT (top horizontal axes). (a, d, g, and j) Results are obtained on the basis of porosity data only, (b, e, h, and k) temperature data only, and
(c, f, i, and l) joint use of porosity and temperature data.
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consistent with the Sobol indices analysis (Figure 2b), which
shows that the effect of aq and b on the temperature profile is
almost negligible. Figure 5d highlights that estimates âq are
characterized by relevant uncertainty when only porosity data
are available and their measurement error is not negligible (i.e.,
r/=D/true 
 4%). The joint use of porosity and temperature
measurements clearly improves the accuracy of all estimates
(see right column of Figure 5) and significantly reduces the
related uncertainty bounds. Results of Figure 5 are comple-
mented by Table 5, where we list estimates of the porosity and/
or temperature standard deviations r̂f (f 5 /, T) and of the regu-
larization weight, k̂, provided by the analysis of all data sets.
The estimated and true measurement error standard deviations
are quite close, r̂f slightly underestimating the corresponding
true values listed in Table 2 with a maximum discrepancy of
about 20%. Estimates k̂ range between 1:231025 and 2:431025

and are also very similar to the true value (1:631025).

4.2.4. Analysis of Compaction-Driven Flow
During the compaction period, fluid in a sedimentary basin flows from the underlying formations toward
shallower and more permeable regions. This phenomenon is called compaction-driven upward flow and its
prediction is key in practical environmental applications to analyze transport processes at shallow locations
[e.g., Hurwitz et al., 2000; Bonnesen et al., 2009].

Here, we assess the propagation of the uncertainty associated with the parameters estimated in sec-
tion 4.2.3 on compaction-driven flow history. As described in section 2, the Darcy flux, uD, is directly
linked to the porosity according to (3). Figure 6 shows the time evolution of uD

true, i.e., the Darcy flux
computed at a shallow location (z 5 2650 m) by (1)–(7) and imposing the true parameter values
listed in Table 1. Qualitatively similar results have also been obtained at different values of z in the
shallow zone (i.e., for z of the order of few hundred meters or less). Note that uD

true increases in time
and reaches approximately 1.5 cm yr21 for t> 150 Ma. This value is close to experimental data
observed in previous works [e.g., Hurwitz et al., 2000]. Figure 6 also depicts the a-gPCE approximation
of uD calculated using the ML estimates of pn obtained with the data sets U�2, p̂n U�2

� �
, (Figure 6a)

and U�2; T2
� �

, p̂n U�2; T2
� �

, (Figure 6b). These data sets have been selected for illustration purposes as
they are characterized by intermediate values of measurement error variances. Both predictions
based on p̂n U�2

� �
or p̂n U�2; T2

� �
are able to accurately reproduce uD

true. Finally, we perform a Monte
Carlo analysis based on 5000 realizations derived on the basis of the a-gPCE model by sampling the
model parameters from a Gaussian distribution with mean equal to p̂n and standard deviation given
by r̂pn . Monte Carlo simulations of uD are depicted in Figure 6 for both cases. The uncertainty in the
prediction of the Darcy flux is greatly reduced when temperature and porosity data are jointly used
(see Figure 6b).

Table 5. ML Estimates of r/ , rT , and k
Obtained From the Diverse Data Sets
Considered

r̂/ r̂T k̂

U�1 0.0047
U�2 0.0078
U�3 0.0230
U�4 0.0316
U�5 0.0751
T�1 1.23
T�2 2.29
T�3 4.58
T�4 9.14
T�5 19.71
U�1; T�1 0.0049 1.22 1.6 3 1025

U�2; T�2 0.0080 2.30 1.2 3 1025

U�3; T�3 0.0229 4.68 2.4 3 1025

U�4; T�4 0.0317 9.17 1.2 3 1025

U�5; T�5 0.0702 17.56 1.4 3 1025

Figure 6. Time evolution of uD at z 5 2 650 m: uD
true(t) (dashed curves), ML predictions (solid black curves) obtained using (a) U�2 and (b)

U�2; T�2
� �

data set. Gray curves represent uD evaluated by a-gPCE on an ensemble of 5000 parameter realizations.
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5. Conclusions

We present a methodology for the inversion of a model describing basin-scale mechanical and geochemical
compaction processes. Our strategy is based on the use of reduced complexity models of the system and is
framed within a Maximum Likelihood (ML) context. The anisotropic Polynomial Chaos Expansion (a-gPCE) of
porosity and temperature distributions is derived upon relying on a two-steps methodology based on Sobol
sensitivity indices. We illustrate the proposed technique in the context of a one-dimensional synthetic test
case when compaction occurs due to the effects of mechanical stresses and precipitation of quartz. Our
work leads to the following major conclusions.

1. The Sobol index based methodology implemented to compute the a-gPCE provides a simple and effec-
tive criterion to improve the accuracy of the resulting surrogate model. In our illustrative example, we
show that a-gPCE allows increasing the accuracy of the parameter estimates while maintaining a reduced
computational cost in comparison with isotropic gPCE.

2. Vertical profiles of porosity are typically employed to characterize compaction processes in sedimentary
basins. Our results show that model inversion performed with only porosity data renders acceptable esti-
mates of the key model parameters. A large uncertainty prediction is associated with the quartz cementa-
tion rate, aq. This result suggests that an accurate estimation of parameters linked to geochemical
processes may become a critical factor, when relying only on porosity data.

3. Relying only on temperature data does not lead to acceptable estimates of aq and of the mechanical compac-
tion modulus, b. This result is consistent with the behavior of the Sobol indices which show that aq and b do
not have a strong influence on the thermal problem. Otherwise, when porosity and temperature measure-
ments are jointly considered all parameter estimates are close to their true counterparts and their estimation
uncertainty is considerably reduced. This result highlights that, in practical applications, there is the urge to
monitor not only the porosity (as usually performed) but also the temperature vertical profiles along boreholes.

The scheme adopted in this work relies on a conceptual model according to which the basin is mainly com-
posed of a single geomaterial. Future extensions of this study include the analysis of (a) compaction proc-
esses in heterogeneous systems, which originate for example by the alternating deposition of sandstone
and clay layers, (b) different geochemical compaction phenomena (such as smectite to illite transformation),
and (c) the benefit of using additional information (e.g., pressure distribution) for an accurate characteriza-
tion of the system. These studies are critical to guide the experimental activity in field test cases.

Appendix A : Computation of the gPCE and a-gPCE

In this Appendix A, we provide some details on the procedure employed to compute the coefficients of the
gPCE and a-gPCE described in section 2. We employ a two-step procedure: first we compute an intermedi-
ate approximation of f(p), namely the ‘‘sparse grid interpolant’’ of f(p), and then we convert such interpolant
into an equivalent polynomial chaos approximation.

For a one-dimensional function gðpnÞ : Cn ! N and for an integer number jn denoting the approximation
level, we consider a set of jn points over Cn, p1

n; p2
n; . . . ; pjn

n . We denote by U jn
n ½g� the unique polynomial of

degree jn21 that interpolates the function g at p1
n; p2

n; . . . ; pjn
n , i.e., U jn

n ½g�ðpk
nÞ5gðpk

nÞ for k51; 2; . . . ; jn. If the
set of jn points covers appropriately Cn and if g is a regular function, the accuracy of U jn

n ½g� increases with jn.

Similarly, for the multidimensional function f(p) and for a multi-index vector j denoting the approximation
level along each direction, we consider the Cartesian (or tensorial) grid over U composed by j13j23 � � �3jn

interpolation points (i.e., jn points along each direction pn), which we termHj. We then denote byMj½f � the
unique multivariate polynomial of degree jn21 along each direction pn interpolating f(p) at each point of
Hj. Note that the polynomialMj½f � can be expressed as a linear combination of Legendre polynomials with
degree not exceeding jn21 along each direction pn

Mj½f �5
X
i2K

aiwiðpÞ (A1)

where K5fi 2 NN : in � jn21g and the coefficients ai can be computed by imposing that the polynomial
Mj½f � is equal to f(p) when evaluated at every point pk of the gridHj, i.e., solving the linear system
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X
i2K

aiwiðpkÞ5f ðpkÞ; 8pk 2 Hj (A2)

The number of points required to buildMj½f � grows exponentially with the number of parameters Np.
Therefore, increasing the number of interpolation points equally in all directions is not computationally con-
venient. The sparse grid interpolant, fSG, circumvents this problem by approximating f(p) by a linear combi-
nation of several small multivariate interpolant polynomials, which are built according to the sparsification
principle, i.e., whenever high accuracy is reached along a given direction, the accuracy in the other direc-
tions should be kept at a minimum. This principle is formulated as

f ðpÞ �
X
j2I

cjMj½f �ðpÞ5f ISGðpÞ (A3)

where cj are suitable coefficients [see, e.g., Formaggia et al., 2013] and I is a set of multi-indices that drives
the sparsification procedure, i.e., it specifies which multivariate interpolant polynomialMj½f �ðpÞ should be
included in the sparse grid interpolant. EachMj½f �ðpÞ can be expressed as a combination of multivariate
Legendre polynomials. Therefore, converting the sparse grid approximation f ISGðpÞ into its equivalent gPCE
form only requires solving as many linear system (A3) as the number of interpolant polynomials composing
f ISGðpÞ and then collecting in a single term all the Legendre polynomials wiðpÞ appearing in more than one
interpolantMj½f �ðpÞ.

Different sparse grids interpolants can be obtained upon varying I . A final gPCE satisfying (12) can be
derived setting [B€ack et al., 2011]

I5 j 2 NN :
XN

n51

jn21
wn
� 1

( )
(A4)

Figure A1 depicts an example of a sparse grid construction. Figure A2 shows three different interpolants:
(i) a multivariate interpolant polynomialMj½f � with 17 points along each direction (tensor grid, Figure A2a),

Figure A1. Graphical example of a sparse grid construction via superimposition of tensor grids: complete two-dimensional sparse grid
(top left, black points) and related components (gray points).

Figure A2. Three sampling strategies of a two-dimensional parameter space C5 21; 1½ �3 21; 1½ �: (a) tensor grid; (b) isotropic sparse grid;
and (c) anisotropic sparse grid with refinement along the direction of parameter p1.
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(ii) a sparse grid built according to (A4) with wi 5 4 (i 5 1, 2) (isotropic sparse grid, Figure A2b), and (iii) a
sparse grid generated by (A4) with w1 5 4 and w2 5 2 (anisotropic sparse grid, Figure A2c).

Appendix B : Numerical Assessment of the Quality of gPCE and a-gPCE

Here, we assess the accuracy of the gPCE and a-gPCE models described in section 4. To this end, we ran-
domly select 500 sets of parameters within the parameters space U (see Table 1) and simulate the resulting
temperature and porosity profiles through (i) the full system model described by (1)–(7), (ii) gPCE of order
w 5 3, and (iii) a-gPCE. Figure B1 are scatterplots of gPCE and a-gPCE solutions of porosity (Figures B1a-b
and ) and temperature (Figures B1c-d ) versus full model outcomes at locations corresponding to the mea-
surement points (see Figure 3) and at the final simulation time. Both surrogate models (gPCE and a-gPCE)
accurately reproduce the temperature values obtained by the full compaction model. The a-gPCE approxi-
mation of porosity is markedly closer to the full model counterpart than the gPCE, especially in the interme-
diate range 0.15</< 0.4. The mean squared error (MSE) between the full model and the gPCE and a-gPCE
approximations of / is 5.63 3 1025 and 2.31 3 1025, respectively.
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