34 research outputs found

    Oxygen Evolution Activity of LaNbN2O-Based Photocatalysts Obtained from Nitridation of a Precursor Oxide Structurally Modified by Incorporating Volatile Elements

    No full text
    The perovskite-type oxynitride LaNbN2O is a photocatalyst that can evolve oxygen from aqueous solutions in response to long-wavelength visible light. However, it is challenging to obtain active LaNbN2O because of the facile reduction of Nb5+ during the nitridation of the precursor materials. The present study attempted to synthesize a perovskite-type oxide La0.6Na0.4Zn0.4Nb0.6O3, containing equimolar amounts of La3+ and Nb5+ in addition to volatile Na+ and Zn2+, followed by the nitridation of this oxide to generate LaNbN2O. The obtained oxide was not the intended single-phase material but rather comprised a cuboid perovskite-type oxide similar to La0.5Na0.5Zn0.33Nb0.67O3 along with spherical LaNbO4 particles and other impurities. A brief nitridation was found to form a LaNbN2O-like shell structure having a light absorption onset of approximately 700 nm on the cuboid perovskite-type oxide particles. This LaNbN2O-based photocatalyst, when loaded with a CoOx cocatalyst, exhibited an apparent quantum yield of 1.7% at 420 nm during oxygen evolution reaction from an aqueous AgNO3 solution. This was more than double the values obtained from the nitridation products of LaNbO4 and LaKNaNbO5. The present work demonstrates a new approach to the design of precursor oxides that yield highly active LaNbN2O and suggests opportunities for developing efficient Nb-based perovskite oxynitride photocatalysts
    corecore