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S U M M A R Y
One of the difficulties with self-consistent plate-mantle models capturing multiple physical
features, such as elasticity, non-Newtonian flow properties and temperature dependence, is that
the individual behaviours cannot be considered in isolation. For instance, if a viscous mantle
convection model is generalized naively to include hypo-elasticity, then problems based on
Earth-like Rayleigh numbers exhibit almost insurmountable numerical stability issues due to
spurious softening associated with the co-rotational stress terms. If a stress limiter is introduced
in the form of a power-law rheology or yield criterion these difficulties can be avoided. In this
paper, a novel Eulerian finite element formulation for viscoelastic convection is presented and
the implementation of the co-rotational stress terms is addressed. The salient dimensionless
numbers of viscoelastic–plastic flows such as Weissenberg, Deborah and Bingham numbers
are discussed in a separate section in the context of Geodynamics. We present an Eulerian
formulation for slow temperature-dependent, viscoelastic–plastic flows. A consistent tangent
(incremental) formulation of the governing equations is derived. Numerical and analytical
solutions demonstrating the effect of viscoelasticity, co-rotational terms are first discussed for
simplified benchmark problems. For flow around cylinders we identify parameter ranges of
predominantly viscous and viscoplastic and transient behaviour. The influence of locally high
strain rates on the importance of elasticity and non-Newtonian effects is also discussed in this
context. For the case of simple shear we investigate in detail the effect of different co-rotational
stress rates and the effect of power-law creep. The results show that the effect of the co-rotational
terms is insignificant if realistic stress levels are considered (e.g. deviatoric invariant smaller
than 1/10 of the shear modulus say). We also consider the basic convection modes of stagnant
lid, episodic resurfacing and mobile lid convection as applicable to a cooling planet. The
simulations show that elasticity does not have a significant effect on global parameters such
as the Nusselt number and the qualitative nature of the basic convection pattern. Our simple
benchmarks show, however, also that elasticity plays a significant role for instabilities on the
local scale of an individual subduction zone.

Key words: Visco-elasticity, plasticity, convection, Deborah number, co-rotational.

I N T RO D U C T I O N

Realistic simulations of earth processes such as faulting, shearing,
magma flow, subduction and convection often require the consid-
eration of non-Newtonian effects such as elasticity and power-law
creep. Non-Newtonian effects combined in a single constitutive re-
lationship allow, at least in principle, the modelling of key aspects
of planetary behaviour, such as mantle convection, the emergence
of an elastic or elasto-plastic boundary layer and even plate tec-
tonics in a unified manner. Such models are unified in the sense
that different modes of mechanical behaviour are represented as
coincident features of a single physical model. Within a planet, the
different convection modes are controlled by the usually strong tem-

perature and pressure dependence of the coefficients of the viscous
part of the model. The existing models of mantle convection with
emergent plate tectonics, for example,], often concentrate on two
key ingredients, namely the exponential dependence on the tem-
perature of the viscosity (Arrhenius law) and a stress limiter in the
form of a fracture, yield or damage criterion for example, Bercovici
(1993), Solomatov (1995), Moresi & Solomatov (1998), Trompert
& Hansen (1998), Ogawa (2003) and Tackley (1998, 2000a). There
are but few papers in which the influence of elasticity is consid-
ered. In the past, strongly viscoelastic convection simulations with
a lithospheric component have been limited to models with explicit
layering in which a non-convecting viscoelastic layer is coupled to a
viscous, convecting substratum (Poliakov et al. 1996). Viscoelastic
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Towards a self-consistent plate mantle model that includes elasticity 789

mantle convection has been limited to considering constant viscosity
(Harder 1991). Harder’s derivations are based on an upper convected
Maxwell model that explains many of the difficulties he has strug-
gled with: Maxwell models exhibit spurious strain softening and
instabilities at elevated stresses. These ‘side effects’ recede signifi-
cantly as soon as a yield criterion or a stress limiter such as power-law
creep is considered. These issues will be discussed in the following
sections. Models of subduction zones that incorporate viscoelastic-
ity, faulting, and free surface behaviour have generally been limited
to modest evolution times, after which further deformation produces
severe remeshing problems (Melosh 1978; Gurnis et al. 1996), or
separate the computational domains into a solid-mechanical do-
main where elasticity is considered (cold slab) and a fluid-dynamic
domain (outer boundary of the slab) where elasticity is neglected
(Regenauer-Lieb et al. 2001; Funiciello et al. 2003; Morra et al.
2004). However, these approaches cannot produce self-consistent
plate tectonics emerging out of mantle convection. Although signif-
icant progress has been achieved by acknowledging non-Newtonian
effects in fluid mechanical approaches, achieving basic plate-like
features, spreading ridges and Earth-like toroidal/poloidal ratios
(Tackley 2000a,b), it has been impossible to reproduce terrestrial
subduction zones. Subduction zones appear as vertical two-sided
downwellings. Comparatively, viscoelasto–plastic calculations pro-
duce asymmetric subduction zones (Regenauer-Lieb et al. 2001)
suggesting that elasticity is required to produce consistent models.
Recent results (Regenauer-Lieb & Yuen 2004) have shown that sym-
metry breaking in faulting arises as a result of elastic stored energy
in a dissipative viscoelastic–plastic system.

In this context, an approach has been put forward by Moresi et al.
(2002) where a novel finite element based on a moving integration
point scheme is applied to the simulation of mantle convection based
on temperature-dependent viscosity, Maxwell-type viscoelasticity
and a pressure-dependant yield criterion. The latter acts as a stress
limiter thus avoiding spurious softening effects otherwise associated
with viscoelasticity. However the main purpose of Moresi et al.’s
(2002) paper was the illustration of the applicability of the model
and the Lagrangian integration point code in terms of a range of
simple benchmark problems including a specific mantle convection
study.

This paper presents an alternative and more general fully Eulerian
model applicable to a wide range of existing fluid dynamic models.
The approach considers combined Newtonian and power-law creep
as well as elasticity and temperature dependence of the creep param-
eters. As the deformations involved in geological deformation are
large the constitutive relationships must contain geometric terms en-
suring that the tensor properties of the model are conserved. A model
with such properties is described as being ‘objective’. There exist a
wide range of objective, viscoelastic–plastic models to choose from.
The primary difference between these models consists in the choice
of the objective stress rate, such as Jaumann, Oldroyd or Truesdell
rates (see Kolymbas & Herle 2003, for a recent discussion). In the
following we give an outline of the constitutive model, derive an
incremental form for the constitutive operator and compare differ-
ent models of viscoelasticity. The salient features of incompress-
ible flows can be studied in homogeneous simple and pure shear
flows, respectively (Appendix A1). For simple shear flow we com-
pare the shear stress–shear strain curves for a constant applied shear
strain rate, assuming an infinitesimal deformation model (i.e. no
co-rotational stress terms), Jaumann and Naghdi models, respec-
tively. Subsequently we consider the problem of incompressible flow
around circular cylinders and highlight parameter ranges governed
by viscous, viscoplastic and viscoelastic–plastic behaviour. Finally

we explore the behaviour of the model in a study on 2-D (plane
strain) natural convection in one by one and two by one domains
for various ratios of the effective relaxation time to the thermal dif-
fusion time (Deborah number), power-law exponents and Rayleigh
numbers.

C O N S T I T U T I V E M O D E L S

We use Cartesian coordinates xi with i = 1, 2, 3; vi are the com-
ponents of the velocity vector, partial differentiation with respect
to xj or the time t is written as a subscribed comma followed by
the index of the coordinate with respect to which we differentiate;
for example, the velocity gradient L i j is defined as L i j = v i, j and
accordingly the partial time derivative of the velocity is written as
v i,t ; σ i j are the components of the stress tensor, δ i j is the Kronecker
unit tensor, T is the temperature. The stretching Dij is defined as
usual as the symmetric part of the velocity gradient L i j and the spin
W i j = −W ji of an infinitesimal element of the continuum is given
by the anti-symmetric part of L i j .

In the formulation of the constitutive model we make the standard
assumption that the stretching is the sum of an elastic, viscous and
a plastic part, that is,

Di j = De
i j + Dv

i j + DP
i j . (1)

For the elastic part we assume hypo-elasticity [see e.g. Prager
1961 for the definition of elastic, hypo-elastic (constitutive equa-
tions are in rate form; linear in the stretching) and hyper-elastic
materials], for the viscous part we assume that the viscosity is made
up of a Newtonian and a power-law contribution (to be specified
below) and for the plastic deformation we assume von Mises plas-
ticity combined with the usual Prandtl–Reuss flow rule (Hill 1998);
thus

Di j = 1

2µ
˙̃σ

′
i j + 1

2η
σ ′

i j + γ̇ P
σ ′

i j

2τ
, Dkk = divv = 0, (2)

where the prime designates the deviator of each tensor; for example:

σ ′
i j = σi j − 1

3
σkkδi j . (3)

In the formulation of the equations we use index notation
and adopt Einstein’s summation convention, that is, summation
over equal indexes. The pressure is defined as usual as p =
−1/3 trace σ i j . Incompressibility is also assumed since we are
mainly interested in large deformations. The significance of the
objective or co-rotational stress rate ˙̃σ i j will be discussed in a sepa-
rate section below. In eq. (2) the quantity τ is the second deviatoric
stress invariant defined as τ =

√
1/2σ ′

i jσ
′
i j and for later use we

define the equivalent strain rate as γ̇ = √
2Di j Di j ; µ and η are

the shear modulus and the shear viscosity, respectively. The shear
viscosity is assumed in the form 1/η = 1/ηN + 1/η P , where 1/ηN

is the Newtonian viscosity and η P is the secant viscosity (instan-
taneous viscosity derived from the secant in the stress–strain rate
plot) of the power-law creep component. The power-law viscosity
depends on the second deviatoric stress invariant and in addition,
both viscosities may depend on the pressure and the temperature.
Specific forms will be assumed below. Here we adopt the usual
practice in the earth science and assume that the shear modulus µ

is a constant. The coefficient of the last term in eq. (2) is the plastic
multiplier γ̇ P . In the finite element simulations we shall assume a
von Mises yield criterion with a constant yield stress τ Y , that is,
τ ≤ τ Y . In classical rate-independent plasticity, γ̇ P is determined
from the so-called consistency condition. Here we adopt a simple
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alternative to the rate-independent plasticity approach: we assume
an evolution equation for γ̇ P in the form γ̇ P = τY /ηY (τ/τY )n pl ,
where ηY is a reference viscosity and npl � 1 is the power-law
coefficient of the plastic deformation. This approach is computa-
tionally simpler than the conventional rate-independent plasticity
approach. In fact for constant yield stress and npl → ∞ the in-
cremental constitutive equations of the power-law approach and
the plasticity approach coincide up to one detail: in the plastic-
ity approach the consistency condition is satisfied by the material
stress derivative whereas in the power-law case it is the spatial stress
derivative satisfies the consistency condition. See Appendix A2 for
details.

The evolution equation for the equivalent strain rate for the power-
law part of the stretching we notice that a vast number of experi-
mental data of the flow properties by dislocation glide have been
fitted to power-law relationships of the type

γ̇ vis P = γ̇0 exp(−ATM/T )

(
τ

τ0

)n

, (4)

where γ̇0 and τ 0 are a reference strain rate and stress, respectively;
A is the activation energy and TM is the melting temperature. In gen-
eral, for dislocation creep or diffusion creep combined with stress
dependence of the constitutive parameters such as grain size, n varies
between 2 and 5. See Kirby (1983), and Karato & Wu (1993) for
further details. A change in n of about unity is reported by some
investigators at stresses less than 0.5 107–1.0 107 Pa. But overall
the value n = 3 seems to be a reasonable approximation for most
dislocation related geodynamic flows. The lower mantle seems to
be governed by diffusion type creep with linear stress dependence
of the stretching so that n = 1 in this case. We, therefore, adopt a
combined rheology consisting of Newtonian and power-law creep
contributions (see also discussion below eq. (7). Stresses associated
with convecting flow ranges from 106 Pa in the asthenosphere to
larger than 108 Pa in subducting plates. The high-stress regimes are
governed largely by rate-independent or almost-rate-independent
material behaviour, elasticity and brittle or plastic behaviour. In the
present model the latter is described either by classic von Mises
plasticity or by the power-law evolution for the equivalent plastic
strain rate as discussed below eq. (3).

Some investigators prefer the approximation

γ̇ vis P = γ̇0 exp(AT/TM )

(
τ

τ0

)n

, (5)

for small deviations of the temperature from the reference tem-
perature (in this case TM ). However, as pointed out by Leroy &
Molinari (1992), thermal runaway instabilities exist mathematically
(Gruntfest 1963) for laws of type (5) with n = 1, but don’t exist if
the original Arrhenius relationship (4) is assumed.

We mentioned before that the Newtonian viscosity ηN depends
on the temperature as well; for simplicity we assume the same style
of temperature dependence as in (4), namely:

ηN = ηN0 exp(ATM/T ). (6)

In the following applications we use a combined Newtonian and
power-law viscosity. We assume that ηN0 = τ0/γ̇0. In this case the
effective viscosity is obtained as:

1

η
= 1

ηN
+ 1

ηN ξp
where ξp = (τ/τ0)1−n . (7)

The stress parameter τ 0 has the significance of a transition stress:
The flow is predominantly Newtonian for τ < τ 0 and predominantly
power law for τ > 0.

Computer simulations of problems involving non-Newtonian
constitutive equations are often based on a scalar effective viscos-
ity which, depends on the values of the state variables from the
preceding time step. Such a procedure usually requires many iter-
ations in each time step since the dependency should actually be
on the values of the variables at the present time step. Geologi-
cal problems are usually highly indefinite, that is, are not uniquely
soluble and effective viscosity based approaches may favour contin-
uations of the pre-bifurcation path. We, therefore, propose to base
the computational model on a tangent form of the constitutive equa-
tions. This approach requires few if any iterations per step. For
the tangent method the incremental form of our constitutive model
is needed. Expansion of eq. (2) about the stress, temperature and
pressure at time t and neglecting terms of order δt3 yields in the
rate-independent limit, ηN → ∞n npl → ∞ (the general incre-
mental form as well as details of the derivation are represented in
Appendix A2):

∂σ ′
i j/∂t =

(
µ(δikδ jl + δ jkδil ) − µ

σ ′
i j

τ

σ ′
kl

τ

)(
Dkl − 1

2µ
σ ′

i j,kvk

)

+ (Wikσk j − σik Wkj ). (8)

In the above limit case the incremental form of the power-law
plasticity model (8) and the corresponding conventional plasticity
model are very similar. The only difference is that in conventional
plasticity the consistency condition for continuous yielding is sat-
isfied by the material stress rate whereas in the present power-law
plasticity model the condition is satisfied by the spatial stress rate.
Hence in the conventional plasticity model the spatial stress deriva-
tive on the left hand side of eq. (8) is replaced by the material rate
(which includes stress advection) and the stress advection term on
the right hand side of eq. (8) behind the stretching is not present.
In the present model we assume that the yield stress is constant.
A more general model will be presented in a forthcoming paper.
We conclude this section with a comment on the iterative method
used for example, by Moresi & Solomatov (1998) and Trompert &
Hansen (1998) in connection with viscoplastic models. In this ap-
proach the viscosity at time t + δt is defined as min(η, τY /γ̇ t+δt ).
Since the strain rate at t + δt is not known at time t the problem has to
be solved iteratively according to min(η, τY /γ̇ t+δt

α ), where α = 0, 1,
2, . . . , is an iteration counter and γ̇ t+δt

0 = γ̇ t . A formulation, which is
consistent with the incremental approach proposed here is obtained
if γ̇ t+δt is replaced by γ̇ t+δt = γ̇ t + δγ̇ = γ̇ t + 2Dt

klδDkl/γ̇
t .

O B J E C T I V E S T R E S S R AT E S

We consider a deforming continuum and assume that an infinitesi-
mal neighbourhood of a spatial point, xi say deforms momentarily
like a rigid body. In this case the stretching vanishes and L i j =
W i j . For momentarily rigid behaviour the stress rate is made up
of an infinitesimal rigid rotation plus the usual contribution due to
stress relaxation. Had we assumed ˙̃σ i j = σ̇i j then the stress rotation
would be neglected. If the relaxation time is infinite (purely elas-
tic behaviour) then the stress rate is zero, which is obviously not
correct.

What are physically meaningful choices for ˙̃σ i j ? There are in fact
infinitely many choices; the main requirement is that the definition
contains the expression for an infinitesimal rotation of the stress
tensor. Hence the simplest definition of the rate ˙̃σ i j , the so-called
Jaumann stress, which we designate as, σ̇ J

i j reads:

σ̇ J
i j = σ̇i j − Wikσk j + σik Wkj . (9)
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The Jaumann rate is the stress measured by an observer co-
rotating with the spin W i j of the infinitesimal volume element
dV centred at xi. Another popular choice in connection with the
Maxwell model of viscoelasticity is the Oldroyd rate:

σ̇ O
i j = σ̇i j − Likσk j − σik L jk . (10)

We notice that the Jaumann rate is equal to the Oldroyd rate
if Dij = 0. The trace of the geometric terms − Wikσ k j + σ ikWkj

in the definition (9) of the Jaumann vanishes, that is, the geo-
metric or co-rotational terms do not contribute to the pressure;
there is another convenient property of the Jaumann rate in con-
nection with the determination of the plastic multiplier from the
von Mises yield criterion τ ≤ τ Y , where τ Y is the yield stress.
We have τ̇ = σi j σ̇i j/2τ = σi j σ̇

J
i j /2τ . Similar properties do not

exist in general for the Oldroyd definition (10) of the stress rate.
The definitions (9) and (10) differ by terms of the form Dikσ k j +
σ ikDjk . Only terms of the type − Wikσ k j + σ ikWkj as in (9) are
necessary for the objectivity of the constitutive model. Depending
on experimental evidence or micromechanical justification, terms
like Dikσ k j + σ ikDjk may or may not be present. The co-rotational
terms in (9) depend only on the deviatoric stress (the pressure terms
cancel because of the skew symmetry of W i j ) and the trace of these
terms vanishes, that is, no contribution to the rate of volume change,
which makes sense in the context of incompressible materials. In
the definition (10) is neither pressure invariant nor does the trace of
the co-rotational terms vanish. In connection with incompressible
materials the following modification of the definition (10) seems
natural: in (10) replace the stresses by the deviatoric stresses and
of the resulting expression consider only the deviatoric part in the
definition of the elastic strain rates. The modified version is invari-
ant with respect to pressure, is deviatoric and coincides in important
special cases such as general plane strain (not just simple shear) with
the Jaumann definition (9). The co-rotational terms and in particu-
lar the convective stress terms complicate the implementation of the
constitutive model considerably. How important are those terms?

The stress convection term is of the order stress times strain rate
divided by shear modulus. Since the stress is limited by the yield
stress, which is a small fraction of the shear modulus we expect—
except if the stress gradients are high—the convection term to be of
the order of a small fraction of the order of magnitude of the lead-
ing term, the stretching. High stress gradients occur at interfaces
between hard and soft materials and geometric instabilities such as
folding and buckling (see end of section on shear flows). The Jau-
mann terms (last term on the right hand side of eq. 8) usually are of
a similar small order, however they are of crucial importance in spe-
cial cases such as internal buckling (folding), surface instabilities
and kinking of anisotropic materials. A wide variety of internal in-
stability problems in anisotropic materials are discussed and solved
in Biot’s (1965) book on the mechanics of incremental deforma-
tions. (see also Muhlhaus 1985 for a study on buckling of layered
materials with bending stiffness).

The Naghdi stress rate (Kolymbas & Herle 2003) is very simi-
lar to the Jaumann rate (9). The only difference is that the spin in
the Naghdi definition is not equal to the non-symmetric part of the
velocity gradient but equal to the spin of the rotation tensor of the
polar decomposition of the deformation gradient. The gradient of
the spatial coordinates of a material point with respect to the coor-
dinates of the material point in the reference configuration is called
the deformation gradient. The deformation gradient can always be
decomposed in a multiplicative fashion into an orthogonal rotation
tensor and a symmetric stretch tensor; see, for example, Malvern
(1969) for details.

The Naghdi rate has many appealing properties (see discussion
in the next section). The main disadvantage is that in a numerical
context the computation of the rotation tensor requires much more
operations than are required for the Jaumann rate. In the section
to come we explore which numerical implementation of objective,
co-rotational stresses is ideally suited for the extremely large-scale
deformation incurred by mantle convection. Such an application lies
clearly beyond the traditional engineering benchmarks. In order to
do this we investigate the essential features of non-Newtonian flow
as described by (2) for the case of simple shear.

S I G N I F I C A N C E O F E L A S T I C I T Y A N D
P L A S T I C I T Y O N D I F F E R E N T T I M E
A N D L E N G T H S C A L E S

Non-Newtonian fluids have a characteristic time scale, the Maxwell
time λ. In a flow with a characteristic shear rateγ̇ch , or a charac-
teristic time Tch (e.g. the service time of an engineering structure
or a time of interest) two dimensionless groups can be formed:
The Deborah number De = λ/Tch and the Weissenberg number
W ei = λγ̇ch . The Deborah number represents the transient nature
of the flow relative to the Maxwell time whereas the Weissenberg
number compares the elastic forces to the viscous effects; a more de-
tailed outline including a discussion of the so-called Pipkin–Tanner
diagram in which the horizontal axis scales with the Deborah number
and the vertical axis with the Weissenberg number can be found in
Phan-Thien (2002). In the Pipkin diagram different domains are de-
scribed by different constitutive relationship, for example, Wei = 0,
De = 0 corresponds to Newtonian flow; De = 0, Wei > 0 corre-
sponds to linear viscometric flows; Wei = 0, De > 0 corresponds to
linear viscoelasticity. We investigate the more general case where
both Wei and De are nonzero. For such cases marked non-linear
behaviour must be considered Phan-Thien (2002).

For mantle scale processes the mean relaxation time is of the or-
der 1022 Pa s/(4 · 1010 Pa) = 2.5 · 1011 s and γ̇ = 10−14 s so that
λγ̇ ≈ 2.5 · 10−3. In the estimates we have assumed a typical litho-
spheric value for the shear modulus (Turcotte & Schubert 2002).
If one is interested only in the global characteristics of the convec-
tive flow such as the Nusselt number then the effect of elasticity
and Jaumann terms can safely be neglected. Larger values of λγ̇

may occur in subducting plates, where the relaxation time is of the
order of 1014 s or more or in mechanically unstable geological struc-
tures such as folding and buckling of layered rock Schmalholz &
Podladchikov (1999). Lithospheric deformations where elasticity is
important such as elastic bending of the lithosphere under islands
chains and at an ocean trench are discussed in Turcotte & Schubert
(2002).

In a study on slab subduction Funiciello et al. (2003) define a
characteristic time as the ratio between the deforming area in arc
length of the bent arc (10–20 km) of the slab from the cold bound-
ary into the mantle and the average plate speed (3 × 10−9 m s−1).
This leads to characteristic time scales between 105 − 2 × 105 yr
((3.3–6.6) × 1012 s). In the linear viscoelastic model realistic slab
shapes were achieved with viscosities that are ranging between η =
1023–1024 Pa s. Taking a shear modulus of µ = 4 × 1010 Pa the De
number thus ranges between 0.38 and 7.5. This is a range where in
natural material non-linear behaviour may be prominent and must
be considered as a possibility. A non-linear approach is charac-
terized by a large Wei number. A non-linear thermally activated
viscoelasto–plastic slab has also been modelled by Funiciello et al.
(2003). Using material constants constrained by laboratory experi-
ments an effective viscosity has been obtained that ranges between
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792 H.-B. Muhlhaus and K. Regenauer-Lieb

η = 1025 − 4.0 × 1026 Pa s, while the corresponding character-
istic strain rate varies between γ̇ch = 3 .0 × 10−15 s−1 to γ̇ch =
1.0 × 10−15 s−1 (see viscosities and strain rates plots for Domain I
in Fig. 12 of Funiciello et al. 2003). With a shear modulus of µ =
4 · 1010 Pa the Weissenberg number associated with the plate bend-
ing is obtained between Wei = 0.75–10.00. The high Wei number for
this particular subprocess is not reflected in the usual global param-
eters (e.g. the Nusselt number) of whole mantle convection where
Wei is of the order of 10−3. This is confirmed by our convection sim-
ulation results presented in the ‘Natural Convection’ section. Minor
influences of elasticity are noticeable in Nusselt number histories
only in connection with episodic lid behaviour (Fig. 11).

Elasticity is an instantaneous effect. The elastic constitutive rela-
tionships are invariant with respect to changes of the time scale. This
property is sometimes called rate-independence in the literature. An-
other important rate - independent property of solids and fluids is
plasticity. However unlike elasticity, the consideration of plasticity
is of crucial importance for models producing plate-tectonics-like
behaviour (Moresi & Solomatov 1998; Trompert & Hansen 1998).
For instance a distinction into stagnant lid convection, mobile lid
convection and episodic resurfacing if only possible is plasticity
and yielding is considered. There are two dimensionless numbers
associated with plasticity. The Bingham number Bi = τY /(ηγ̇ch)
where τ Y is the v. Mises yield stress. The Bingham number is a
measure for the ratio between plastic and viscous dissipation. An-
other dimensionless number associated with plasticity is the ratio
between the yield stress and the shear modulus. This number is
related to the Bingham and the Weissenberg number as τ Y /µ =
Bi · Wei. Assuming a global Weissenberg number 2.5 × 10−3, an
average lithospheric strength of τ Y /µ between 0.2 × 10−3 and 0.5 ×
10−3 (e.g. Scholz 1990) we obtain values for the Bingham number
Bi between 0.08 and 0.2; that is, plastic deformation will occur.

In the section following the computational formulation we
demonstrate the salient features of viscoelastic flows in simple shear.
We then include plasticity and consider viscoelastic–plastic flow
around rigid cylinders for different values of the Weissenberg num-
ber. We shall use this case to highlight parameter ranges governed
by viscous, viscoplastic and viscoelasto–plastic behaviour. The lo-
cal Weissenberg number between the cylinders is much higher than
the global Weissenberg number defined by the far field velocity and
the cylinder radius and the Maxwell time. This strong variation be-
tween global and local flow characteristics is not unlike the situation
in mantle convection where the stress in a subducting slab can be
much higher than the average stress related to mantle size, average
viscosity and average plate speed.

C O M P U TAT I O N A L F O R M U L AT I O N

In the next section we present the results of finite element simulations
of plane strain, simple shear and natural convection problems in
infinite strip in simple shear and in a rectangular L by H domain in
convection, where H is the dimension in the direction of gravity. The
governing equations consist of the constitutive relationships (A16),
the stress equilibrium conditions

σ ′
i j, j − pth

,i + RacT gi = 0, (11)

and the heat equation

T,t + v j T, j = T, j j + Dic

Rac
σ ′

i j Di j . (12)

The comma followed by an index stands for partial differentiation
with respect to the corresponding coordinate, that is, a ,i = ∂a/∂xi.

In eq. (11) the unit vector gi is parallel and opposite the direction
of gravity; pth is the pressure due to convection. The parameters
are explained ion the text further below. The stresses and the shear
modulus µ are non-dimensionalized with respect to η ∗/tD, where

tD = ρ0cp H 2

κ
(13)

is the characteristic thermal diffusion time, η∗ is equal to the pre-
exponential coefficient of the Newtonian viscosity, ηN0 times a co-
efficient, which depends on the way the Arrhenius relationship is
transformed for computational purposes (see eq. 19 for definition);
ρ 0 is the surface density cp is the heat capacity and κ is the ther-
mal conductivity. Typical values are H = 700 km for upper mantle
convection and H = 3000 km for whole mantle convection. With
κ/(ρ 0cp) = 10−6 m2 s−1 we obtain 1017 < tD < 1019 s. In eqs (11)
and (12) Rac and Dic designate the computational Rayleigh number
and the dissipation number respectively. The Rac and Dic, consistent
with the way the stresses are non-dimensionalized, are defined as

Rac = ρ2
0 cpgα�TH 3

κη∗ and Dic = αρ0gH

ρ0cp
. (14)

In (14) α is the thermal expansion coefficient and �T is the tem-
perature difference between the hot and the cold boundary of the
domain under consideration. The temperature and the velocities are
non-dimensionalized with respect to �T and HtD respectively. In
all simulations we assume that the shear stresses and normal ve-
locities vanish on all boundaries of the domain; the temperatures
are fixed on the top and the bottom and the normal gradient of the
temperature vanish on the sides. The governing equations have been
implemented into the finite element based partial differential equa-
tion solver FASTFLO using the high level language FASTALK (see
http://www.cmis.csiro.au/Fastflo/ for details). In the implementation
we solve sequentially the stress equilibrium equation and the heat
equation. The incompressibility constraint is satisfied iteratively by
means of the algorithm

pα+1 = pα − Pen vα+1
j, j , α = 1, 2, 3, . . . . (15)

where α is an iteration counter, Pen = Pen0µeffδt (see Appendix A2
for the definitions of the effective shear modulus µeff and the ef-
fective viscosity ηeff) are penalty functions. A typical value for the
constant Pen0 is 100; in connection with direct solvers convergence
is of course fastest the larger Pen0. However, there are usually limits
to the value of Pen0 in connection with iterative solvers.

After the pressure iteration the stresses are calculated by solution
of matrix problems for each of the two columns (in 2-D) of the stress
tensor (see A14). The solution of the stress problem is only necessary
if stress advection is considered. If stress advection is neglected or
not necessary (e.g. if elastic effects are not considered) then stress
updates can be evaluated at the element level. For consistency the
order of interpolation is one order less than the one for the velocities.
For the velocities and the temperature we use six-noded triangular
elements with bi-quadratic shape functions in connection with an
unstructured mesh. For the stresses we use constant strain triangles
and evaluate the values of the stresses at the mid-side nodes after
the solution of the stress equations. Subsequently the heat equation
is solved using backward Euler time differencing.

The stress equations and the heat equation involve advective
derivatives of the stresses and the temperature respectively. We use a
basic upwinding scheme (Zienkiewicz & Taylor 2000, p. 30) to avoid
spurious oscillations of the fields in advection dominated regimes.
The common procedure to implement the standard streamline up-
wind Petrov–Galerkin (SUPG) formulation is to modify the test

C© 2005 The Authors, GJI, 163, 788–800

Journal compilation C© 2005 RAS



Towards a self-consistent plate mantle model that includes elasticity 793

or weight functions used in the formulation of the finite element
method. However, in the present case it is more convenient to modify
the differential equation: the function a is a scalar (e.g. temperature),
a vector (normal vector on anisotropy surfaces) or a tensor (stress
tensor). In our formulation we replace the material time derivative
of a as follows:

a,t + v j a, j ← a,t + v j a, j −
(

(a,t + v j a, j )
h

2
√

vkvk
vi

)
,i

. (16)

For pure advection problems, this approach is equivalent to the
SUPG method. For unstructured meshes the discretization length
scale h and the time step δt is determined by a Courant-like condition

h =
√

area

nelem/2
and δt = C

h

vmax
. (17)

The argument of the square root is a characteristic discretization
length. Note that we are using unstructured meshes based on trian-
gular elements; vmax is the maximum component of the magnitudes
of the nodal point velocities. In eqs (16), and (17), C is a Courant-
number-like quantity, which in explicit algorithms is put equal to
1/2 to ensure stability of the numerical solution in connection with
regular grids. In the present calculations the Courant condition is
not needed for numerical stability since we are using a fully im-
plicit integration scheme but as a means to control the accuracy of
the transient solution of the non-linear equations. C should be cho-
sen in such a way that δt is always a fraction of the interest time
(such as the Maxwell time for instance, when appropriate) of the
problem.

For the definition of an effective Rayleigh number we require a
measure for the effective viscosity. We use the following definition:

η̄ =
∫

V τdV∫
V

τ

η
dV

. (18)

Heat transport in convection simulations is usually advection
dominated; hence the advection—and upwinding terms are crucial
for a successful simulation. Since the elastic strain rate depends on
the material stress rate, advective stress derivatives appear in the
stress calculation as well. However, since the stresses are limited by
the yield stress, which usually amounts only a small fraction of the
shear modulus, the stress advection terms are not relevant in rock-
like materials. If plastic deformations occur it is important that the
stress is mapped exactly onto the yield surface which is in our case
given by the second invariant of the deviatoric stress. Here we apply
a simple but effective radial return scheme. The scheme works as
follows: First the velocities are calculated using the tangent formu-
lation described in the previous section (General case: eq. A16).
Subsequently the stresses are calculated assuming viscoelastic be-
haviour everywhere.

In the convection study in the next section we ignore the pressure
dependence of TM in the Arrhenius relation. The main emphasis
in the study will be on the role of elasticity, power-law creep and
plastic yielding on the emergence of different convection styles. In
the dimensionless formulation we write the Arrhenius relationship
[eq. 6 as follows (see Tackley 2000a)]

ηN0 exp(ATM/T ) → ηN0 exp

(
2 Â

3

)

× exp

(
Â

(
1

1 + T
− 2

3

))
= η∗ exp

(
Â

(
1

1 + T
− 2

3

))
(19)

The exponent in (19) varies between 0 for T = 0.5 and − Â/6 and
Â/3 for T = 1 and T = 0, respectively. For Â = 23 this corresponds

to a Newtonian viscosity contrast of about 105 across the convection
cell. In the absence of convection, the Newtonian viscosity varies
slowly due to temperature change in the lower half of the cell, from
1 in the middle to 0.022 on the bottom and rapidly in the upper
half from 1 to 2087 on the top. For temperature-dependent viscosi-
ties based on the approximation (5) the situation is slightly differ-
ent: the viscosity variation is distributed more uniformly across the
layer.

S H E A R F L O W S

Simple shear

In this section we illustrate the significance of elasticity when com-
bined with viscous behaviour. The importance of certain geometric
nonlinearities associated with elasticity is also discussed. We con-
sider plane simple shear in the (x 1, x 2) plane. The shear is assumed
parallel to x1. The shear layer has width 1; the velocities at x = 0
are zero and the velocity at x 2 = 1 is γ̇ = const., where γ is the shear
strain (top displacement divided by layer thickness) of the layer.
Details of the results presented are included in the Appendix (A1)
for easy reference. The constitutive relations for D22 and D12 are
obtained as

1

2µ
(σ̇ ′

22 + γ̇ σ12) + 1

2η
σ ′

22 = 0,

1

2µ
(σ̇12 − γ̇ σ ′

22) + 1

2η
σ ′

12 = γ̇ /2.

(20)

The terms γ̇ σ ′
22 and γ̇ σ12 are the co-rotational terms from the

definition (9) of the Jaumann stress rate; the viscosity η is defined
by (7). First we point out a number of properties of the steady state
solution (i.e. zero stress rates). By multiplying the first eq. (20) by
σ 12, the second equation by σ ′

22, and subtracting the second from
the first equation, we obtain:

σ ′
22 = −σ ′

11 = − τ 2

µ
. (21)

Combining the eqs (20) for zero stress rates yields the shear stress
at steady state:

σ12 = ηγ̇

1 + (λγ̇ )2
, (22)

where λ = η/µ is the local relaxation time. The quadratic rate term
in the denominator of (22) is derives from the Jaumann terms in the
constitutive model (2). For purely Newtonian flow the shear stress
has a maximum at γ̇ = λ−1 = µ/ηN with strain-rate softening
for γ̇ > λ−1. We illustrate the various non-Newtonian effects in
Figs 1 and 2 by means of results for the relative extreme case W ei =
(ηN0/µ)γ̇ = 1 (e.g. (1025 Pa s/1011 Pa)10−14 s−1. We compare the
stress response for γ̇ = const with and without Jaumann terms.
Also shown for comparison is the response for a Maxwell model
based on Naghdi’s definition; see (Braun 1994; Kolymbas & Herle
2003) of the co-rotational rate.

The responses of the infinitesimal model (no co-rotational terms)
and the Naghdi definition (—the spin is ω = −γ̇ /2/(1 + (γ /2)2),
whereas in the Jaumann model ω = −γ̇ /2—) are qualitatively sim-
ilar; the Jaumann model however displays the spurious softening
behaviour as discussed below eq. (10). There is no experimental
evidence for this kind of purely geometric softening in rocks and
metals. Insofar the softening behaviour of the Jaumann model rep-
resents an unwanted side effect. However does this mean we have
to abandon the Jaumann model, which is computationally much
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Figure 1. Simple shear of Maxwell model with Newtonian (linear) rheol-
ogy . Weissenberg number W ei = (ηN0/µ)γ̇ = 1.

more efficient and simpler to implement than the Naghdi model for
instance?

Fig. 2 shows the results for a combined Newtonian and Power
law rheology with n = 3 assuming the same dimensionless strain
rate as in the examples displayed in Fig. 1. In this case the spuri-
ous softening behaviour disappears as do most of the differences
between the three models. For combined Newtonian and power-law
creep the argument of the term (λγ̇ )2 in the denominator of (22)
reads: λγ̇ = (ηN /µ)γ̇ /(1 + (τ/τ0)2). To obtain an order of magni-
tude approximation for τ at steady state we assume pure power-law
behaviour and derive the result τ/τ 0 = (τ 0/µ)−1/3 for ηN /µγ̇ = 1
as was assumed in the shear examples. For τ 0/µ = 10−3 as in Fig. 2
we find (λγ̇ )2 ≈ 10−4 i.e. according to (22) Jaumann effects are not
present in this case as confirmed by the results depicted in Fig. 2.
However even for an unrealistically high transition stress of τ 0/µ =
10−1 we find (λγ̇ )2 = 0.032 meaning that co-rotational effects are
barely noticeable even at unrealistically high transition stresses. We
conclude that the spurious softening in simple shear cannot occur
if stress limiters in the form of power-law creep or a yield criterion
e.g. (Kolymbas & Herle 2003) are taken into account.

Figure 2. Simple shear of Maxwell model with combined Newtonian and
power-law (n = 3) rheology. The dimensionless strain rate (= W ei =
(ηN0/µ)γ̇ ) is Wei = 1 as in the previous case. The transition stress is
τ 0 = 10−3 µ.

Figure 3. Flow around circular cylinders; the spacing between the centres
of the cylinders is 2a and the radius of the cylinders is a. the spacing between
the upper and lower boundaries is 6a and the vertical velocity at the upper and
lower boundary is assumed as constant equal to v0. In the present case Wei =
ηN0v0/(µa). The computational domain is 2a, 6a considering symmetries.
The velocity components on the cylinder surfaces are equal to zero.

Flow around rigid circular cylinders

We consider viscoelastic–plastic flow between circular cylinders
(Fig. 3). The problem is symmetric so that only one half of the
domain needs to be discretised. The assumed geometry and the
boundary conditions are shown in Fig. 3.
The cylinder radius is a, the spacing between cylinders is 2a and
the model height is 6a. The cylinder walls are assumed as rough
so that the velocity components vanish on the cylinder boundaries.
The horizontal velocities (v1) as well as the shear stress vanish on
the sides of the model. On the top and bottom surfaces we also as-
sume that the shear stress vanishes and we also assume v2(x 1, x 2 =
±3a) = v0 = const. The mesh consists of 718 six-noded triangular
elements. The material is described by a constant shear modulus
µ, a constant viscosity η and yielding is described by the power-
law model introduced in the Constitutive Relations section repeated
here for easy reference:γ̇ P = τY /ηY (τ/τY )n pl ; In this application
we use a power law coefficient of npl = 25. The Weissenberg num-
ber is defined as W ei = η

µ

v0
a . In the non-dimensional form of

the governing equation (the time is non-dimensionalized with re-
spect to the Maxwell time), Wei is the coefficient of the deviatoric
stress rate and since we wish to model close to rate-independent
plasticity behaviour we also define the coefficient in the power law
as W ei = ηY

µ

v0
a . We assume a weak rock with τ Y /µ = 1/1000.

To get an idea of the order of magnitude of the maximum strain
rate on the cylinder wall we assume a parabolic distribution of v2

between the cylinders. It follows from continuity that the maximum
velocity on the symmetry line between the cylinders is 3v0 (the
difference to the corresponding finite element result proved to be
less than 20 per cent for purely viscous flow) and the strain rate on
the cylinder wall is 6v0/a. Hence we expect viscoelastic or elastic–
plastic behaviour to dominate for Wei > 1/6. In fact if yielding takes
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place then the strain rate localizes on the cylinder walls, the strain
rate can be significantly higher than our simple estimate and rate-
independent behaviour (elastic–plastic) takes over at much smaller
values of Wei than 1/6. Our conjecture is indeed confirmed by the
numerical simulations.

In Fig. 4(a) we show the history on the force acting on the cylinder
over time for various values of Wei. On start up of the flow the system
behaves elastically. If v0 is large we observe a rapid build up of
strain and corresponding elastic stress on the sides of the cylinder.
The stress level is ultimately limited by the yield stress. If v0 is small
that is, Wei � 1 then the stress relaxes before yielding can occur.

In Fig. 4(b) we represent the quasi steady state value of the force
on the cylinder at v0t/a = 0.004 versus the Weissenberg number.
Because of the strain concentration on the sides of the cylinder the
transition to plastic, quasi-rate-independent flow occurs already for
Wei > 0.02. The flow is predominantly viscous for Wei < 0.006 and
viscoplastic in between. A higher or lower yield stress will not affect
the non-dimensional value on the force on the cylinder in Fig. 4(b)
as long as the yield stress is smaller than the shear modulus. If the
yield stress is of the same order of magnitude as the shear modulus
then side effects as described in the previous subsection which are
associated with the co-rotational stress terms may occur.

For each loading curve in Fig. 4(a) the duration of transient be-
haviour may be defined by the dimensionless time interval �t rans

Figure 4. (a) Resulting force on cylinder versus time for different values
of Wei = ηv0/µa. See Fig. 3 for geometry and boundary conditions. We
assumed τ Y /µ = 10−3 for Wei < ∞ and τ Y /µ = ∞ for Wei = ∞ (elas-
tic limit). (b) Force on cylinders at steady states vs. Weissenberg number
Wei. The system is ideal plastic for Wei > 0.02, predominantly viscous for
Wei < 0.006 and viscoplastic in between.

v0/a from 0 to the point where the dimensionless force approaches
a constant value. From Fig. 4(a) we find that for predominantly vis-
cous behaviour (Wei < 0.006) the interval �t trans is of the order of
one-half of the Maxwell time; �t trans decreases for increasing Wei
in the plastic range (Fig. 4a) and approaches 0 for Wei → ∞.

Such short time intervals are insignificant on most geological time
scales. In the present example we have assumed ideal plasticity, that
is, τ Y = const. If strain softening is considered due to some form
of damage accumulation then localization and rupture altering the
nature of the system may take place during the transient phase.
In such cases the evolution of the system has to be modelled as
accurately as possible which includes elasticity. In the plastic range
(Fig. 4b) we found the inclusion of elasticity convenient from a
numerical point of view even if we are interested in steady states
only. The time is then functioning as a natural underrelaxation factor.

N AT U R A L C O N V E C T I O N

Mesh dependence and transition stress

In the following study on mesh dependence of the results and sub-
sequently on the influence of the transition stress τ 0 we ignore the
temperature dependence of the viscosity. The results displayed in
Fig. 5 are obtained assuming Rac = 106 (see eq. 14), (µ/η∗)tD = ∞,
n = 3, τ 0 = 104 and τ Y /τ 0 = ∞. In all simulations we shall assume
that Di = 0 and the pressure dependence of the melting temperature
is ignored. More sophisticated models including pressure and state-
variable-dependent yield stress will be considered in a forthcoming
paper. The different graphs of the Nusselt number correspond to
different discretizations of the problem. The coarsest discretization
(154 six-noded triangles) produces the usual result: a steady state is
reached after a few decaying oscillations. An intermediate convec-
tion structure consisting of three convection cells (one major cell in
the middle flanked by to smaller cells on the sides) gets temporarily
locked in, in the finer discretizations, until the intermediate struc-
ture becomes unstable and the system settles into a single cell steady
state. The Nusselt numbers at steady state are remarkably similar
for all three discretizations.

The results for the medium and the fine discretization are qualita-
tively the same: both predict the existence of an intermediate state,
which eventually becomes unstable. Qualitative changes in the con-
vection pattern are associated with oscillation of Nu(t). In the finer

Figure 5. Mesh dependence of solution of finite element models. Rac =
106. The average dimensionless viscosity at steady state is 0.7. The mesh
consists of 154, 734 and 1488 six-noded triangular elements respectively.
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Figure 6. Nusselt number versus time for transition stresses τ 0 =
102.5, 102.5 and 0.5 × 102.5 The yield stress τ Y = 3 × 102.5. Computa-
tional Rayleigh number: Rac = 105. The average viscosities at steady state
are 0.44, 0.21 and 0.10.

discretization the transition from the intermediate to the steady state
appears delayed somewhat, however studies in a different context
indicate that the delay diminishes for smaller time steps. The coarse-
ness of the 154 element discretization acts as a filter suppressing the
emergence of the intermediate structure. The dimensionless average
steady state viscosity is about 0.7 in all three cases.

Next we consider the influence of the transition stress. Fig. 6
shows histories of the Nusselt number for τ 0 = 2 × 102.5, 1 × 102.5,
0.5 × 102.5. In all cases we assume again n = 3 and an infinite
shear modulus. The steady state Nusselt numbers at steady state
are 12.61, 17.21 and 21.70; the average dimensionless viscosity at
steady state is 0.44, 0.21 and 0.10 respectively and Rac = 105. In all
cases we have assumed a dimensionless yield stress of (τ Y /η∗)tD =
10∧2.5 and a power-law representation of ideal plasticity; that is,
τ Y = const; ηY = ηN0, npl = 15 (see Appendix A2 for details).

The approach to steady state becomes increasingly more oscilla-
tory with decreasing transition stress, as expected. The effective
Rayleigh numbers, based on the average viscosities are Raeff =
2.27 × 105, 4.76 × 105 and 106. The Nusselt numbers obtained
from our non-Newtonian analyses match very closely the ones from
a Newtonian analysis based on the average viscosity at steady state.
There are differences in the transient phase, however. The consider-
ation of elasticity does not have a major effect. We have conducted
simulations assuming (µ/η∗)tD = 105. The result was that the peaks
during the transient phase were somewhat higher however the steady
states turned out almost identical to the infinite elasticity simula-
tions. The influence of elasticity will be investigated further in the
context of simulations with temperature-dependent viscosity.

Temperature-dependent viscosity

The temperature dependence of the viscosity is considered as de-
fined by (19) with Â = 23. As we mentioned above, the viscosity
ratio from the cold to the hot boundary due to temperature alone
is 105. More extreme viscosity contrasts are not a problem in the
present formulation because the upper limit for the effective dimen-
sionless viscosity is set by the dimensionless elastic shear modulus
and the time increment µtD/η∗δt . We assume Rac = 104, τ 0 =
0.866 × 102.5, τ Y = 3τ 0, ideal plasticity i.e. τ Y = const and

Figure 7. Nusselt number vs. time. Parameters: yield stress τ Y = (1, 3,
>6)τ 0—corresponding to mobile, episodic and stagnant lid behaviour; tran-
sition stress τ 0 = 0.866 102.5; Rac = 104; (µ/η∗) tD = 104; discretization
unstructured, 734 six-noded triangles; Courant number C = 0.1. The aver-
age viscosity at the end of the stagnant lid calculation was 0.27, 0.33 for
the steady state of the mobile lid, and between 0.20 and 0.40 of 0.40 for the
episodic behaviour. Mobile and stagnant lid cases have steady states. The
higher Nusselt number at steady state corresponds to the mobile lid case.

(µ/η∗)tD = 104. In the simulations we use the power-law plasticity
model with nY = 15 and ηY = ηN0 (see A2 for details).

The corresponding Nusselt number vs. time plot is shown in Fig. 7.
After initial, rapidly decaying primarily elastic oscillations, the sys-
tem settles temporarily into stagnant lid type convection (Fig. 8).
During this initial convection stresses build up until the yield stress
is locally reached. The locally increased mobility is accompanied
by thermal advection, a narrow plume is forming, hot material is ad-
vected underneath a narrow cold boundary layer until finally the cold
layer plunges into the model mantle along the boundary opposite to
the plume (Fig. 9).

This process repeats itself in apparently regular intervals. The
time intervals between the first peaks of the episodic case in Fig. 7
are 0.071, 0.044, 0.045, 0.044, const. spacing from then on. Also
shown in Fig. 7 are the Nusselt numbers for mobile lid convection
(obtained for τ Y = τ 0) and stagnant lid convection (τ Y ≥ 6τ 0).
The isotherms and velocity arrows displayed in Figs 8 and 9 are
representative for the stagnant lid phases (minima of Nusselt plots
in Fig. 7) and the subduction events (maxima of Nusselt plots), for
episodic convection. Episodic behaviour based on 3-D rigid visco
plastic model is also observed by Trompert & Hansen (1998) and
Stein et al. (submitted 2004). Based on numerical experiments, Stein
et al. have identified sub-domains in the parameter space of their
model of stagnant lid convection, episodic behaviour and mobile lid
convection.

The vertical lines plotted along the cold boundary of the velocity
plots are the difference between the magnitude of the largest hor-
izontal velocity anywhere in the domain and the magnitude of the
local horizontal velocity on the cold boundary, divided by the largest
horizontal velocity; i.e. if the local horizontal velocity on the cold
boundary happens to be the largest one, then the line has locally
the length zero. If the horizontal velocity on the cold boundary is
zero (stagnant lid behaviour) the lines have uniformly the length
one (Fig. 8). The fact that the horizontal velocity distribution on the
cold boundary layer is flat on large parts of the body is indicative of
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Figure 8. Typical temperature and velocity distributions for episodic convection at a minimum of the Nusselt number (refer to Fig. 7).

Figure 9. Typical temperature and velocity distributions for episodic convection at a maximum of the Nusselt number (refer to Fig. 7).

plate-tectonics like behaviour; that is, parts of the boundary move
not unlike rigid bodies.

The question is what controls this kind of behaviour. A key model
property, beside the elastic shear modulus is obviously the existence
of a finite yield stress. The influence of the yield stress is represented
in Fig. 10.

Simulations were conducted for τ Y = (3, 4, 5)τ 0. The spacing
between the five peaks of the τ Y = 3τ 0 simulation is 0.071, 0.044,
0.045 and 0.044; the spacing between the four peaks for the τ Y = 4τ 0

is 0.055, 0.051 and 0.054. The effect of the increasing yield stress
is to somewhat delay the onset of the first episodic event and extend
the period between the events. No episodic behaviour is observed
for τ Y > 6τ 0. Finally we consider the sensitivity of the episodic
modes to values of the elastic shear modulus (Fig. 11).

The influence of the calculation to the magnitude of the elastic
shear modulus becomes important if (µ/η)∗tD < 105 for the pa-
rameters assumed. Virtually no difference can be observed between
the (µ/η)∗tD = 105 and the (µ/η)∗tD = 1020 cases. Smaller shear
moduli cause a shortening of the period between the subduction

events. The area under a spike in the Nusselt plot is directly related
to the mechanical work associated with a subduction event.1 The
area underneath the peaks—and thus the work associated with a
subduction event—decreases with decreasing value of the elastic
shear modulus. It is remarkable that this effect is noticeable even in
global energy measure such as the Nusselt number.

C O N C L U S I O N S A N D F U T U R E
D I R E C T I O N S

We have discussed the salient features of viscoelastic–plastic flows
in a section of shear flows in which we consider the cases of simple
shear and flow around circular cylinders. We derive an analytical
solution for transient viscoelastic flow and discuss possible unphys-
ical side effects associated with the choice of particular co-rotational
stress rates. We conclude that these unphysical side effects do not

1By multiplying (11) with vi, integration of the resulting expression over the
domain V and application of Gauss theorem we obtain the total mechanical
power Ẇ as Ẇ = RaV (Nu − 1). See also Parmentier et al. (1976).
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Figure 10. The influence of the yield stress: Simulation for τ Y = (3, 4)τ 0.
No episodic behaviour is observed for τ Y > 6 τ 0.

Figure 11. Influence of elastic shear modulus: (µ/η)∗tD = 0.25 104, 0.5
104, 105, 1020; n = 3, npl = 15, Rac = 104, τ 0 = 0.866 102.5, τ Y = 3τ 0.

occur for stress levels possible in rocks. The latter is guaranteed if
a suitable yield criterion is included in the constitutive description
as proposed here and elsewhere (e.g. Moresi et al. 2002).

In the subsequent section we used the case of flow around cylin-
ders to highlight parameter ranges governed by viscous, viscoplastic
and viscoelasto–plastic behaviour. The local Weissenberg number
between the cylinders is much higher than the global Weissenberg
number defined by the far field velocity and the cylinder radius and
the Maxwell time. This strong variation between global and local
flow characteristics is not unlike the situation in mantle convection
where the stress in a subducting slab can be much higher than the
average stress related to mantle size, average viscosity and average
plate speed. In the plot of the steady state values of the resulting
force on the cylinders versus the Weissenberg number we observe a
sharp transition between predominantly viscous to rigid plastic be-
haviour with a relatively narrow interval of viscoplastic behaviour
in between.

The formulation described for viscoelastic–plastic geological
flows is based on a combined Newtonian and power-law rheology;
the effect of plastic yielding is considered by an additional power-
law term with a high (n ≥ 15) power-law coefficient (eq. A13).
The model is valid for studying the geodynamics of mantle
convection among other problems. The non-linear equations of

motion are solved incrementally based on a consistent tangent
formulation producing second-order accurate results so that iter-
ations within each time step are not necessary in most cases. In
Moresi & Solomatov (1998) and Tackley (1998) plastic yielding is
considered by introducing an upper limit to the viscosity given by the
ratio of the yield stress and the equivalent viscous strain rate. Since
the strain rate at the current time is unknown, an initial estimate
has to be based on the strain rate from the last time step produc-
ing first-order accurate results; hence a time consuming, iterative
approach is necessary. The iterative approach is usually more time
consuming than the present incremental approach with occasional
iterative reduction of residuals. In the iterative approach the con-
stitutive operator is more sparse than in the consistent incremental
approach, which sometimes can be used to advantage. The con-
vection problem with strongly temperature-dependent viscosity has
some unique characteristics: the strain in much of the system is very
large, necessitating a fluid dynamics formulation, yet the relaxation
time in the cool thermal boundary layer is significant compared to
the characteristic time associated with fluid flow.

In the bulk of the fluid the relaxation time is small compared to
the time taken for convective features to evolve due to the much
lower viscosity of the warm fluid. Because elastic stresses in the
strongly convecting part of the system relax rapidly, the introduction
of elasticity does not produce a qualitative change to the stagnant
lid convection regime (see Solomatov 1995). In episodic and mobile
lid regimes, there is a competition between the build-up of stresses
in the cool lid, and the stress-limiting effect of the yield criterion.
The introduction of elastic deformation does not influence this bal-
ance either, although we do expect a difference in the distribution
of stresses in the lid, which explains the variation in the onset of
overturns and their increasing frequency which we observed as the
elastic shear modulus was reduced. We expect also that the pres-
ence of an elastic deformation mechanism allows deformation of
the highly viscous lid with lower viscous energy-dissipation rates.
This is reflected in the lower energy dissipation during episodic over-
turns which we observed by integrating the system Nusselt number.
In the Earth this effect may be important in subduction zones where
prediction of dissipation rates due to slab bending is unphysically
large. In a next step towards self-consistent plate mantle instabili-
ties at the local scale of slab bending or subduction initiation are
important. We have shown that elasticity plays a crucial role at this
local scale.

The present power-law representation of plastic flow has the ad-
vantage that strain localization due to strain softening or the fact that
pressure sensitivity is not matched by a corresponding volumetric
dilatancy and is not accompanied by a change of type of the govern-
ing equations (Needleman 1988). The notorious mesh sensitivity
of finite element solutions (beyond the usual discretization error)
does not occur in this case. We plan to expand our model to include
pressure sensitivity and history dependence in the form of suitable
self-consistent hardening/ softening relationships and apply the ex-
tended model to more detailed studies of subduction and large-scale
shear banding.
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A P P E N D I X

A1 Simple shear

The following derivations are based on the assumption of the Jau-
mann rate in the constitutive relationships (2). It should be men-
tioned that for simple shear the Jaumann rate based model and the
Oldroyd based model are identical. For isothermal, plane simple
shear parallel to x1, the equilibrium conditions read:

σ12,2 = 0,

σ22,2 = 0. (A1)

From the general definition of the Jaumann stress rate

σ̇ J
i j = σ̇i j − Wikσk j + σik Wkj , (A2)

we obtain for simple shear:

σ̇ ′J
22 = −σ̇ ′J

11 = σ̇ ′
22 − 1

2
(v2,1 − v1,2)σ12 − σ21

1

2
(v2,1 − v1,2)

= σ̇ ′
22 + v1,2σ12,

σ̇ J
12 = σ̇12 − 1

2
v1,2σ

′
22 + σ ′

11

1

2
v1,2

= σ̇12 − v1,2σ
′
22.

(A3)

Insertion into the constitutive relationship (2) yields:

λσ̇12 − λγ̇ σ ′
22 + σ12 = ηγ̇ ,

λσ̇ ′
22 + λγ̇ σ12 + σ ′

22 = 0, (A4)

where

γ̇ = v1,2, λ = η

µ
and η =

(
1

ηN
+ 1

ηN (τ/τ0)1−n

)−1

. (A5)

In steady state the stress rate in A4 disappears; elimination of σ 22

yields eq. (22) in the simple shear section.

A2 Tangent operator

Incremental expansion of the constitutive relation

Di j = 1

2µ
σ̇ ′J

i j + 1

2η
σ ′

i j + γ̇ p
σ ′

i j

2τ
, (A6)
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with a power-law evolution equation for γ̇ p

γ̇ p = τY

ηY

(
τ

τY

)n pl

, (A7)

and η is defined by eq. (7), yields:

Di j − δt

2ηeff
(Wikσk j − σik Wkj ) − 1

2µ
σ ′

i j,kvk = 1

2µeffδt
δσ ′J

i j

+
(

1

hvis
+ 1

hY

)
︸ ︷︷ ︸

1/h

σ ′
i j

2τ

σ ′
kl

2τ
δσ ′J

kl + 1

2ηeff
σ ′

i j + 1

2ηeff
σ ′

i j

(
δT

hT
+ δp

h p

)
,

(A8)

where

σ̇ ′
i j = σ ′

i j,t + σ ′
i j,kvk, (A9)

δσ J
i j = (σi j,t − Wikσk j + σik Wkj )δt, δT = T,tδt, δp = p,tδt

(A10)

hvis = 1

(n − 1)
ηN

(
τ

τ0

)1−n

, and hY = 1

(n pl − 1)
ηY

(
τ

τY

)1−n pl

(A11)

hT = T 2

ATM
, h p = − T

A ∂TM
∂p

, (A12)

where ηN is defined by (6) and

ηeff =

 1

ηN
+ 1

ηN

(
τ

τ0

)1−n + 1

ηY

(
τ

τY

)1−n pl




−1

,

µeff =
(

1

µ
+ δt

ηeff

)−1

. (A13)

Inversion of A8 yields:

δσ ′J
i j =

(
µeffδt(δikδ jl + δ jkδil ) − (µeffδt)2

h + µeffδt

σ ′
i j

τ

σ ′
kl

τ

)

×
(

Dkl − σ ′
kl,mvm

2µ

)
− µeffδt

ηeff

(
1 − µeffδt

h + µeffδt

)

×
(

1 + δT

hT
+ δp

h p

)
σ ′

i j − µeffδt2

ηeff
(Wikσk j − σik Wkj ),

(A14)

where

h = hvishY

hvis + hY
. (A15)

The function hp in eqs (A8) and (A14) considers the pressure depen-
dence of TM . The slope of the TM –p curve is usually assumed as con-
stant; a typical order of magnitude value for the slope is 10−7 K Pa −1.
For n = 1 and µ → ∞ we obtain Newtonian flow with the viscosity
1/2ηN .

In many practical applications the velocity problem, the pres-
sure/incompressibility problem and the heat equation are solved
sequentially. In this case the terms associated with δT and δ p in eq.
(A14) are not needed. In linear instability analyses however the full
incremental form (A14) is required.

In the viscous limit, µ → ∞, (A14) reduces to:

δσ ′
i j =

(
ηeff(δikδ jl + δ jkδil ) − η2

eff

h + ηeff

σ ′
i j

τ

σ ′
kl

τ

)
Dkl

−
(

1 − ηeff

h + ηeff

) (
1 + δT

hT
+ δp

h p

)
σ ′

i j .
(A16)

In steady states, the stress, temperature and pressure increments
vanish so that the remaining terms in (A16) have to cancel. The
latter is indeed the case as can be shown by insertion of Dij =
1/2ηeff σ ′

i j .
The limit ηN → ∞ does not yield a simpler expression for the

incremental relationship A14 since the effective moduli still depend
on the viscosity ηY (τ Y /τ )n pl−1. In the rate-independent limit, which
is obtained for ηN → ∞, npl → ∞ and δt → 0, the expression A14
reduces to

∂σ ′
i j/∂t =

(
µ(δikδ jl + δ jkδil ) − µ

σ ′
i j

τ

σ ′
kl

τ

) (
Dkl − 1

2µ
σ ′

i j,kvk

)

+ (Wikσk j − σik Wkj ). (A17)

In the above derivations it was always assumed that the yield stress
is constant. A large deformation model with power-law plasticity
with state variable dependence of the yield stress will be presented
in a forthcoming paper.
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