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[1] X-ray microtomography (micro-CT) with micron resolution enables new ways of characterizing
microstructures and opens pathways for forward calculations of multiscale rock properties. A quantitative
characterization of the microstructure is the first step in this challenge. We developed a new approach to
extract scale-dependent characteristics of porosity, percolation, and anisotropic permeability from 3-D
microstructural models of rocks. The Hoshen-Kopelman algorithm of percolation theory is employed for a
standard percolation analysis. The anisotropy of permeability is calculated by means of the star volume
distribution approach. The local porosity distribution and local percolation probability are obtained by
using the local porosity theory. Additionally, the local anisotropy distribution is defined and analyzed
through two empirical probability density functions, the isotropy index and the elongation index. For such
a high-resolution data set, the typical data sizes of the CT images are on the order of gigabytes to tens of
gigabytes; thus an extremely large number of calculations are required. To resolve this large memory
problem parallelization in OpenMP was used to optimally harness the shared memory infrastructure on
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cache coherent Non-Uniform Memory Access architecture machines such as the iVEC SGI Altix 3700Bx2
Supercomputer. We see adequate visualization of the results as an important element in this first pioneering
study.

Components: 5674 words, 11 figures, 5 tables.
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1. Introduction

[2] In this contribution we make use of the in-
creasing power of X-ray micro-CT which is now
available at submicron resolution for some desktop
devices and X-ray synchrotron techniques. The
technology has potential to revolutionize the anal-
ysis of rock textures, an excellent review on the
state of the art is given by Jerram and Higgins
[2007]. We process the 3-D images with the
improved computer processing capability of a
modern parallel computer system. Our goal is to
extract a statistical scale-dependent quantification
of microstructures to be used for further numerical
modeling for larger-scale processes such as fluid
flow through fractured porous rocks. We propose
to combine our stochastic description with other
techniques in the future to extract transport and
other physical properties from microtomographic
images by forward numerical simulation [Arns et
al., 2001; Knackstedt et al., 2006]. In order to
achieve this goal we extend the original formula-
tion of the local porosity theory [Hilfer, 1992,
2002] to include the quantification of anisotropic
permeability microstructure. The resulting algo-
rithm is a powerful method that is not restricted
to stochastic analysis of permeability but can be
used to derive inputs for a stochastic geometric
model of any anisotropic microstructures.

[3] The local porosity theory [Hilfer, 1992, 2002]
in its basic application extracts just two geometric
characteristics, the local porosity distribution and
the local percolation probability. It provides a
scale-dependent characterization of the microstruc-
ture of porous media that can be used as an
effective medium approach to predict fluid flow
transport [Biswal et al., 1998; Widjajakusuma et

al., 1999; Biswal and Hilfer, 1999; Manwart et al.,
2002]. Anisotropy of permeability is one of the
most important transport properties influencing
fluid flow in 3-D space, but it is not included in
the original local porosity theory. Ketcham and
Iturrino [2005] analyzed and visualized the anisot-
ropy of permeability using a high-resolution X-ray
CT data set, in order to derive the distribution of
effective porosity for permeability analysis. They
used an approach where the sample were imaged
twice; once with its pore space empty (in dry
sample) and second with the pore saturated with
water (in wet sample). By subtracting the raw CT
images of the saturated and dry samples from each
other the pore space was identified. This experi-
mental approach, however, was expensive and
inconvenient. In addition, the results are subject
to subtle changes in environmental conditions and
operational processes.

[4] Parallel computing of percolation is the field of
computer sciences, physics and mathematics (D. W.
Blair and J. Machta, The parallel computational
complexity of the percolation model, paper pre-
sented at APS March Meeting, American Physical
Society, Denver, Colorado, 2007, available at
http://meetings.aps.org/link/BAPS.2007.MAR.
C1.90). To the best of our knowledge no parallel
computer algorithms for local porosity theory have
been published. Therefore, analyses are currently
restricted by the memory of the computer. Consid-
ering the typical file size of several tens of giga-
bytes this analysis cannot be performed on
standard computer architecture. We present a tech-
nique that overcomes this limitation. Our codes are
parallelized in OpenMP and the speed-up is tested
on the iVEC SGI Altix 3700Bx2. We also visualize
the 3-D reconstruction by using AMIRA1 for
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microstructures, GID1 for cluster visualization, and
the open software Mayavi for tensor visualization.

[5] This method is our first fundamental step for
understanding the upscaling from microscale to
macroscale fluid flow. For homogeneous media,
an essential representative element volume can be
extracted on the basis of the scale-dependent prop-
erties of fluid transport for upscaling. Our ultimate
purpose is to derive the relation between fluid flow
and deformation at large crustal scale in a multi-
scale earth systems approach [Regenauer-Lieb et
al., 2008]. For general natural heterogeneous
models, this method could be used as a building
block for a heterogeneous multiscale method [E and
Engquist, 2003] by feeding microscale observation
data to the microscale model.

2. Methodology

2.1. Data Preparation: From CT Images to
3-D Label Data

[6] Our working data is a stack of gray scale
images which is obtained from the reconstructed
data of CT scanning. We use the Amira1 software
package to process the images. The software pack-
age enables us to (1) build up 3-D microstructure
which is a procedure from pixels in image slices to
voxels in a volume; (2) crop any parallelepiped
from the 3-D volume for our interest or as a
representative volume; (3) resample the data to
get coarser resolution for reducing computation
time and improving rendering performances, as
an option; (4) implement image segmentation
which separates our target fabric or structure from
the matrix, e.g., separates pores from solids in
porous media; and (5) visualize the microstructure
in different styles.

[7] A crucial procedure for our next analysis is to
export a label data based on the above processes.
The label data is a file that stores the data of the
cropped 3-D parallelepiped after segmentation, in
which voxels that have a value between the spe-
cific threshold values are labeled as 0 and others
are labeled as 1. For example, pores are labeled as
0 and solids are 1 in porous media. All our analyses
in the following use only the label data.

2.2. Extraction of Parameters From a 3-D
Model

[8] Three parameters are extracted from the micro-
structure model, including porosity, percolation

and anisotropy of permeability. Porosity 8 is sim-
ply defined as the ratio of the volume of pore space
to the total (or bulk) volume. Both volumes can be
calculated from the label data of the 3-D model.

[9] In mathematics and physics, percolation gener-
ally refers to the nature of the connectivity in lattice
models of random systems. In geological terms,
percolation is defined as the slow movement of
fluids through a porous material. Here we use the
mathematical definition of percolation. To derive
the percolation analysis of a model, two terms are
defined: (1) neighbors are voxels with one com-
mon plane in the 3-D microstructural model of the
cubic lattice and (2) a cluster is a group of
neighbors which are connected to each other with
the same material label. Then two steps, labeling
clusters and evaluating percolation, are imple-
mented. Labeling clusters is a process of giving
all voxels within the same cluster the same label.
This is a time consuming step for a large data set,
thus the Hoshen-Kopelman algorithm [Hoshen and
Kopelman, 1976] is used to reduce the computing
time. We define a given direction is percolating
when at least one voxel on one side of a sample
volume has the same label as at least one voxel on
the opposite side [Stauffer and Aharony, 1994].

[10] The anisotropy of permeability is calculated
from the star volume distribution method following
Ketcham [2005], on the basis of the assumption
that permeability anisotropy is in part a function of
directional variations in the character of the pore
structure. The pore structure is represented by the
structure of the percolating cluster. For the cluster
which consists of a set of n sites (voxels), each site
i is considered as a vector ai = (axi, ayi, azi)

T relative
to the center of the cluster, which is calculated from
the arithmetic mean of the coordinates of all cluster
voxels in each direction. The anisotropy of the
permeability can be described by the orientation

matrix T =
Pn
i¼1

aiai
T, where aiai

T is the dyadic product

of the site vector ai and the transposed site vector
ai
T. The orientation matrix has 3 eigenvalues t1 <
t2 < t3 and corresponding eigenvectors u1, u2, u3.
Isotropy index I = t1/t3 and elongation index E = 1
� t2/t3 are defined to estimate the intensity of
anisotropy. I ! 1 and E ! 0 imply isotropic
permeability. To allow comparison among different
volumes and shapes, the components of a site
vector are normalized by its volume size in the
corresponding directions. The orientation matrix
and its eigenvalues are normalized by the sum of
the eigenvalues.
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2.3. Stochastic Analysis

[11] To understand the effect of scale and to
extrapolate microscale to macroscale, a stochastic
analysis is necessary. The so-called local porosity
theory [Hilfer, 1992, 2002; Biswal et al., 1998] is
used as a stochastic model. The sample to be
analyzed by the local porosity theory should be a
rectangular parallelepiped of a simple cubic lattice,
whose side lengths are M1, M2 and M3 in units of
the lattice constant a, i.e., the resolution of the
images. Let K(x, L) denote a subvolume which is a
cube of side length L and whose center is located at
the lattice vector x. The subvolume acts as a
moving window [Williams and Baxter, 2006] and
scans through the whole model. The moving step
can be equal to the lattice constant or an integer
multiple of the lattice constant. Statistical results
can be derived from a series of calculations of
porosity, percolation and anisotropic permeability
of each subvolume for different subvolume sizes L.

[12] The local porosity distribution m(f, L) is
defined as

m f; Lð Þ ¼ 1

m

X
x
d f� f x; Lð Þð Þ; ð1Þ

where d denotes the Dirac d function, f(x, L) is the
local porosity in the subvolume K(x, L), m is the
total number of subvolumes with side length L.

[13] The local percolation probability in the a
direction is defined through

la f;Lð Þ ¼

X
x
La x;Lð Þdf;f x;Lð ÞX

x
df;f x;Lð Þ

; ð2Þ

where

df;f x;Lð Þ ¼
1 if f ¼ f x; Lð Þ
0 otherwise

�
; and

La ¼
1 if percolating in a�direction

0 otherwise

�
;

a = x, y, or z denote the direction along every axis,
and a = 3 represents the percolation along all three
directions.

[14] For the analysis of the anisotropy of perme-
ability, similar to equation (1) we define the local
anisotropy distributions as

c I ; Lð Þ ¼ 1

m0

X
x
d I � I x;Lð Þð Þ; ð3Þ

where m0 is the total number of percolating
subvolumes with side length L, I represent 2

indices of anisotropic permeability, the isotropy

index I1 = I =
t1 x;Lð Þ
t3 x;Lð Þ and the elongation index I2 = E =

1� t2 x;Lð Þ
t3 x;Lð Þ. Here ti(x, L) are 3 normalized eigenvalues

of the orientation matrix of a percolating cluster in

subvolume K(x, L) that satisfy
P3
i¼1

ti(x, L) = 1.

When more than one cluster is percolating in a
subvolume, only the largest percolating cluster is
considered for the statistical analysis.

2.4. Parallelization of Stochastic Analysis

[15] Generally, the analysis of porosity, percolation
and anisotropy for a single volume can be calcu-
lated on a single processor in a short amount of
time, e.g., 0.1–0.2 s for a volume of 1 million
voxels. The total number of subvolumes m in a
stochastic analysis is given by

m ¼
Y3
i¼1

INT
Mi � L

n

� �
þ 1

� �
; ð4Þ

where n represents the moving step in units of the
lattice constant. When n = L, subvolumes are
placed in nonoverlapping way, it might lead to
fluctuation of results; for n < L, it is an overlapping
placement and gives higher weight to the central
region of the model. For a large data set and a small
n, the computing time for a single processor
becomes prohibitively large. To alleviate this
problem, it is necessary to parallelize the calcula-
tion. The probabilities defined in equations (1)–(3)
are dependent only on the summation of data
within a moving window. By using the OpenMP
programming techniques it was possible to quickly
and easily augment the DO loops that move this
window to move a team of windows, one for each
available CPU. This parallelization splits up the
most time-consuming part of the calculation.

3. Data for Benchmarking

[16] We use a synthetic quartz sandstone sample to
verify the code and to demonstrate the method of
visualization. The diameter of the sample is 5mm
which contains 543 slices with 2000 pixels in both
x and y directions. The size of the data set is
2.01GB and the resolution is �2.5 micron.
Figure 1 displays a slice of the original gray scale
image and its corresponding binary image. A
model to be analyzed should be a parallelepiped
of M1 	 M2 	 M3 according to section 2.3. The
larger the volume the better is the statistical
information obtained. We have not included the
boundary area of the sample because of noise in
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the perimeter. We were therefore limited with the
largest possible realization to 0.75 mm away from
the perimeter. This translates to the largest subset of
2	 2	 1 mm3 volume cropped from this sandstone
sample. The gray scale histogram of the cropped
volume and the 3-D microstructural model of solid
after the preprocessing procedures are shown in
Figure 2. Animation S1 was captured to show the
3-D pore structures.1

[17] In order to investigate the effects of resolution,
we resample the raw image data by merging 2 and
4 voxels in every direction to get coarser data sets
of resolution with 5 and 10 mm, respectively. These
are referred to as medium- and low-resolution data,
respectively. The original data is called high-reso-
lution data.

4. Results

4.1. Stochastic Analysis Results

[18] For each resolution data set, a series of calcu-
lations are carried out for different subvolume
sizes.

[19] Figure 3 shows the local porosity distributions
for different subvolume sizes. Most curves show
normal distribution, which conforms to the Central
Limit Theorem that underpins the moving window
method. As the subvolume size is increased the
distribution of porosity becomes narrower and the
average value of porosity, 0.2444, is obtained.
When the subvolume size is equal to or greater

than 800 mm, most subvolumes have porosity of
0.24 or 0.25. Thus a subvolume with side length
800 mm is sufficiently large to accurately estimate
porosity. The different resolution data sets exhibit
the same characteristics and yield the same result.

[20] Figure 4 presents the results of the local
percolation probabilities. Figure 4a shows (1) the
probabilities increase with increasing porosity;
(2) the probabilities of percolation in x, y and z
directions are similar, which means the sample is
almost isotropic; and (3) percolation in all 3
directions has lower probability than those one
directional probabilities. Figure 4b shows (1) the
local percolation probabilities also increase with
increasing subvolume size and (2) when the sub-
volume size is greater than 300 mm, the probabil-
ities of percolation in 3 directions are almost 100%.
We also notice in Figure 4b that some curves have
a small range of porosity. It is because the denom-
inator of right-hand side of equation (2) is zero,
which is correspondent to m(f, L) = 0, thus
la(f, L) has no solution outside this range for
those subvolume sizes. Figure 4c compares the
probabilities of different resolution data sets for
porosity of 0.24. Although the resolution appears
to slightly influence the local percolation probabil-
ity, i.e., higher-resolution data sets have higher
percolation probabilities for small subvolume sizes,
there is no difference when the subvolume size is
greater than 300 mm, where all subvolumes are
definitely percolating in 3 directions for all high-,
medium- and low-resolution data. These results
imply that for a statistical assessment of percolation
the minimum representative elementary volume is
300 mm of side length.

Figure 1. Gray scale image and binary image of a slice of the synthetic sandstone sample.

1Auxiliary materials are available in the HTML. doi:10.1029/
2008GC002358.
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[21] Figure 5 presents the results of local anisotro-
py distributions. Figure 5a shows that the maxi-
mum probability locates in the low isotropy index
for small subvolume sizes, i.e., locates in I = 0.14
for L = 100 mm, indicating a strong anisotropy. As
the subvolume size increases, the probability
increases and gives a higher isotropy index. The
locus of the maximum probability asymptotically
equals to an isotropy index of 0.94. In Figure 5b,
the elongation index asymptotically approaches
0.03 when the subvolume size increases. These
two indices indicate that the sandstone sample is
near isotropic when the subvolume size is large
enough, i.e., equal to or larger than 800 mm. For
smaller subvolumes the permeabilities have strong
anisotropy. Again, this conclusion is the same for
the different resolution data sets.

[22] As a validation of the porosity and the anisot-
ropy estimates, we compare our results with the
experimental data and scanning electron micro-
scope (SEM) images.

[23] The Helium porosimetry reveals that the bulk
porosity of the sample is approximately 28.5%,
which is about 4 porosity unit higher than the
porosity calculated from the micro-CT images.
This discrepancy between these two porosity
results was assessed by using Scanning Electron
Microscope (SEM) point counting analysis and
additional nanometer resolution field emission
SEM (Figure 6). As shown in Figure 6, there are
micropores in the sandstone sample with dimen-
sions less than 2.5 microns, which is the resolution
of the X-ray CT images. These micropores exist in
three different sites: (1) cavities within the calcite

cement, (2) microgaps between the calcite rims and
the quartz grains, and (3) microfractures in the
quartz sand grains. Because of the resolution limits
of the X-ray CT scans these micropores are labeled
as solids and are therefore not detected. This leads
to a systematic underestimate of the porosity.

[24] For additional benchmarking of our results we
used high-resolution point counting with the Auto-
GeoSEM approach developed at CSIRO Explora-
tion and Mining. This analysis was done on a 2-D
slice through the sample with 1.6 microns local
resolution. This is 64% higher in resolution than
that of the X-ray CT image. In practice the X-ray
pore identification is lower than the theoretical
limit of 2.5 microns because it must span several
voxels in at least one dimension for reliable detec-
tion [Ketcham, 2005]. With the SEM technique a
total of 13860 points were examined. The porosity
from the SEM point counting is 27.3%. This is
closer to the Helium measurement by 2.8%. This is

Figure 2. Gray scale histogram and 3-D solid structure of the volume in size of 2 	 2 	 1 mm3.

Figure 3. Local porosity distribution of the model.
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a clear indication that a higher-resolution image
can detect more pores. We performed an additional
field emission SEM analysis of the cement with
nanometer resolution. This technique does not
allow a quantitative analysis of pore space. How-
ever, visual examination of this nanometer resolu-
tion SEM image indicates the presence of
submicron pores in the cement not resolved by
the SEM point counting. We conclude that the
discrepancy between experimental and image anal-

ysis can therefore be entirely attributed to resolu-
tion limits.

[25] Concerning the anisotropy assessment the
laboratory measurements suggest that the synthetic
sandstone sample has an almost isotropic Klinken-
berg permeability of 4.5 Darcy. The conclusion of
near isotropic permeability is consistent with the
results of the percolation analysis based on the CT
images.

[26] The above comparison between experimental
and computational results suggests that the code can
adequately describe porosities and permeability
anisotropy within the resolution limits of the image
data supplied.

4.2. Visualization

[27] In addition to the probabilities of porosity,
percolation and anisotropy discussed in the previ-
ous section, we would like to assess the micro-
structure with a visual approach. Figure 2 and
Animation S1 illustrate the microstructure of the
model. Next we will illustrate the percolation and
anisotropy of permeability.

Figure 4. Results of local percolation probabilities.
(a) Probability (a = x, y, z, 3) versus porosity, L = 80 mm
of medium-resolution data. (b) Probability (a = 3)
versus porosity for different L, medium-resolution data.
(c) Probability (a = 3) versus subvolume size for
different resolutions, f = 0.24.

Figure 5. Probabilities of (a) isotropy index and
(b) elongation index.
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[28] Labeling clusters is the key procedure for the
percolation analysis. Visualization of clusters of a
volume not only illustrates the structure and con-
nectivity of pores, but also checks the result of
percolation and verifies the codes. We use a finite
element preprocessor (GID1) to visualize the
clusters. Voxels are recognized as hexahedral ele-
ments and labels of different clusters are treated as
numbers of material of elements. Clusters can be
displayed selectively in this approach. Figure 7
illustrates clusters of pores with different volume
sizes. Clusters are displayed in different colors. For
ease of visual interpretation the color scale is
rendered by 20 different colors distinguishing the
largest clusters. Small clusters are rendered in a
single color. It is considered that those isolated
clusters do not contribute to fluid flow, on the basis
of the identification of current image resolution.

[29] The anisotropic permeability of a subvolume
is represented by the tensor of anisotropy and
illustrated by an ellipsoid corresponding to the
tensor. In Figure 8 tensors are shown in nonover-
lapping subvolumes with subvolume sizes of
100 mm and 500 mm, respectively. For the small
subvolume size (Figure 8a), tensors of anisotropy
have varying shapes and their orientations are ran-
dom distributions. In contrast, for the large subvo-
lume size (Figure 8b), the shape of tensors is more
spherical, indicating a tendency toward isotropy.
Furthermore, the distribution of orientations can be
captured by a stereographic projection of the princi-
pal axes of the tensors. Figure 9 gives the stereo-
graphic projection of the maximum principal axes of
the tensors corresponding to Figure 8.

[30] The tensor of anisotropic permeability is re-
lated to the structure of the percolating cluster in

the subvolume as illustrated in Figure 10. We zoom
in to the lower corner of Figure 8a and focus on the
range of x = 1–400, y = 1–400 and z = 1–100 mm.
With a subvolume size of 100 mm, there should be
16 nonoverlapping subvolumes. Only 14 ellipsoids
are shown because there are 2 subvolumes that are
not percolating. Five arbitrarily chosen ellipsoids
of tensor are labeled as A–E, the corresponding
pore clusters are shown in the inset boxes also
labeled A–E. Both representations are equivalent.
However, the ellipsoidal representation allows a
quantification of the anisotropy. We would like to
point out that on the basis of the percolation theory,
the anisotropic permeability is different from that
calculated from all pores. A particular example is
clearly illustrated in the inset box D. While pores
are distributed almost equally in x and y directions,
only one pore cluster is percolating in x direction,
thus the anisotropy of permeability is also oriented
in x direction.

4.3. Computing Speed-Up Test

[31] The performance of parallelization is mea-
sured by the speed-up, which is defined as the
ratio of wall time of 1-CPU to the wall time of N-
CPUs. We tested the speed-up of our codes in
different calculations. Figure 11 shows the speed-
up curve of CPUs from 2 to 32 for the model size
of 400 	 400 	 200 (medium-resolution data) with
a subvolume size L = 40 mm. In Figure 11, the
shaded area is the region between the upper bound
(the ideal speed-up) and the lower bound (allowed
on our supercomputer for minimum speed-up)
defined by the square root of the number of CPUs.
it can be seen from Figure 11, when 2 or 4 CPUs
are used the speed-up is linear, while with 8 and
16 CPUs the speed-up relatively drops, but

Figure 6. SEM images of calcite cement rims around quartz grains showing the presence of micropores and the
porous nature of the calcite crystals that are beyond the resolution of X-ray CT used in this investigation.
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improves again with 24 or 32 CPUs. This varying
behavior is typical for the cache coherent Non-
Uniform Memory Access architecture cache effect.
This effect does not only depend on the number of
processors but also on the size of the models and
subvolumes. Thus, for an unknown problem it is
impossible to estimate the performance a priori. It
is generally necessary to do a performance test on a
case by case study. However, our tests have dem-
onstrated that all the speed-ups are acceptable, i.e.,
tested speed-up is above the minimum line.

5. Discussion

[32] In this paper, we offered a comprehensive
analysis of the porosity, percolation and anisotropic
permeability by using X-ray micro-CT scan images
and mathematical methods. The results from the
synthetic sandstone sample demonstrated the via-
bility of the extended local porosity theory. With
the additional visualization, the characteristics of

microstructures can be captured quantitatively and
visually. The method developed here is an appro-
priate method to extract the stochastic geometry
properties of any microstructures.

[33] The new method gives the definition of an-
isotropy characteristics in a natural extension to
Hilfer’s classical local porosity theory. Hilfer’s
porosity distribution and percolation probability
are extended by anisotropy distribution functions.
These describe the intensity of percolation of
different directions and provide much more de-
tailed information for fluid flow in a 3-D space. On
the basis of the percolation theory and cluster
labeling, the anisotropy of permeability is only
related to the percolating pore cluster, all non-
percolating or isolated pore clusters which do not
contribute to fluid flow are not involved in the
calculation of anisotropy.

[34] Our analysis not only allows the identification
of a representative volume element which can be

Figure 7. Pore clusters in different subvolume sizes. (a) Pore clusters in subvolume from (1, 1, 1) to (20, 20, 20).
(b) Pore clusters in subvolume from (1, 1, 1) to (50, 50, 50). (c) Pore clusters in subvolume from (1, 1, 1) to
(100, 100, 100). (d) Small pore clusters of Figure 7c; the largest cluster is hidden.
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Figure 8. Tensors of anisotropic permeability in nonoverlapping subvolumes (unit of axes is voxel). (a) Subvolume
size is 100 mm. (b) Subvolume size is 500 mm.

Figure 9. The maximum principal axes of tensors in the stereographic net. (a) Subvolume size is 100 mm.
(b) Subvolume size is 500 mm.
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used for feeding into a homogenization approach
such as in finite elements, but also allows the
calculation of important scaling laws such as
critical exponents and site percolation threshold.
Furthermore, the method can also be used as a
building block for a heterogeneous multiscale
method [E and Engquist, 2003]. The heteroge-
neous multiscale method is one of many methods
to derive a generalized numerical solution tech-
nique for multiscale processes in heterogeneous
media. It relies on a macroscale solver and supplies
missing numerical data from microscale models.
Microstructure analysis based on the present
method can feed observation data to the microscale
model. The approach is suitable for quantification
of microscale to macroscale transitions. This analy-
sis thus provides the first step in a multiscale
assessment and quantification of physical proper-
ties of materials.

[35] The parallelization of the code makes it pos-
sible to handle data sets of gigabyte sizes, an
increment of 2GB can be added per additional
processor. The parallel performance is limited by
the OpenMP architecture. Generally, the efficiency

of speed-up becomes lower when more processors
are used. We suggest using less than 32 processors.
Future enhancements can be gained from MPI
parallelization, although OpenMP is ideal for this
problem if less than 32 processors are available.

[36] From the example of the synthetic sandstone,
the representative volume element of around 1 mm3

is enough. In addition, the resolution sensitivity
analysis allows an identification of the lowest
permissible resolution. This low-resolution data

Figure 10. Comparison of tensors of permeability and pore clusters.

Figure 11. Computing speed-up chart.
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can be used for further forward numerical model-
ing of this sample because the values of porosity,
percolation and anisotropic permeability in 3 reso-
lutions do not differ significantly from each other.
Thus the method suggested here allows an assess-
ment of the lowest resolution for numerical for-
ward modeling of microscale processes.

[37] A preliminary application of the method was
conducted in a natural mylonite sample, which
displays an extreme anisotropy of the microstruc-
ture of pores [Liu et al., 2009]. Results of sub-
samples in the scale of 0.6–1 mm of the mylonite
showed that (1) in the margin of the localized shear
zone, random and irregularly distributed pores are
not percolating in the subsample scale and (2) in
the center of the shear zone, there are numerous
nonpercolating smaller pores and two percolating
directions, with strongly anisotropic permeability.
Further study revealed that a dynamic permeability
related to cavitation along grain boundaries is
maintained [Fusseis et al., 2009].

[38] Note, that the percolation analysis does not
equate to a permeability estimate but it is the first
step toward such an estimate from CT images. The
analysis will be continued through forward simu-
lation techniques in order to obtain permeability
estimates as function of pressure, deviatoric stress,
temperature and chemical composition of solids
and fluids. We have shown an example for analysis
of a porosity network, however, the statistical
method is suitably general that it can be used for
any microstructural analysis such as damage, grain
size, dislocation, crack, chemical species distribu-
tions etc. The stochastic geometry approach will
allow an inclusion of microscale material proper-
ties and processes into the computations of large-
scale processes. Such calculations will be useful in
many disciplines, e.g., from earthquake simulations
and geodynamics applications at the largest scale
down to petroleum engineering, geothermal and
mining applications at intermediate scale and lab-
oratory analysis at the smallest scale.
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