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Entropic Limit Analysis Applied to
Radial Cavity Expansion Problems
ManMan Hu* and Klaus Regenauer-Lieb

School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, Australia

Analytical solutions of limit analysis design for the simple problem of plane

strain expansion of a cylindrical cavity are derived and generalized into

entropic extremum principles that allow a fundamental assessment of coupled

thermal/hydro/mechanical/chemical (THMC) material instabilities and their effect

on the upper and lower bounds of dissipation. The proposed approach integrates

a thermodynamically based estimation of uncertainties in coupled deformation

processes and an identification of the intrinsic material length/time scales that appear

as energy eigenstates of the localization problem. Analytical limit analysis design

solutions of the cavity expansion are obtained and upper and lower bound estimates

are shown to coincide. This provides a robust framework for adding multiphysics

feedbacks. Isothermal conditions are first relaxed and the feedback between shear

heating, thermal weakening and thermal diffusion is analyzed. Then the analysis is

extended to a full range of THMC localization phenomena which are described with a

cascade of characteristic time/length scales derived from instabilities in the governing

reaction-diffusion equations. Entropic uncertainties are estimated by alternating system

constraints between thermodynamic flux and thermodynamic force on the boundaries.

Keywords: cavity expansion, von Mises plasticity, logarithmic spiral, slip-line field, work principle, limit analysis,

energy methods

1. INTRODUCTION

In this paper we extend the classical upper and lower bound principle of plastic work (“limit
analysis design”) into an uncertainty framework for multiphysics coupling. We propose that in
such problems the same method can be extended through assessing the steady state limit of the
deformation process and evaluating the upper and lower bounds of entropy production. In order to
demonstrate the extended limit analysis design we choose the simple problem of cavity expansion,
which is widespread through all disciplines. Its universal nature is encountered in geomechanics,
metal forming processes, tunneling, soil mechanics with many other applications in geotechnical,
petroleum, civil, mining, material, energy, mechanical and manufacturing engineering (Johnson
et al., 1983; Papamichos et al., 2001; Haimson, 2007; Fjar et al., 2008; Meier et al., 2013; François
et al., 2014; Hu et al., 2017). Figure 1 shows an example of borehole breakout in hollow-cylinder
tests for black shale where the area around the hole is damaged through an application of internal
pressure (Meier et al., 2013). Meanwhile, radial expansion of a round cavity is mathematically
appealing as closed form solutions can be derived due to its cylindrical symmetry (Johnson et al.,
1983; Hu et al., 2017).
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FIGURE 1 | Shear localization pattern in the form of logarithmic spirals

observed in hole enlargement experiments on black shale (Meier et al., 2013).

Slip-line field theory of plasticity, as an upper bound solution
of limit analysis design, has been extensively studied since
the rise of the second industrial revolution (featuring mass
production and manufacturing) in early twentieth century,
due to its convenience in yield estimation for metals (e.g.,
punching, extrusion, indentation) and its neatness in graphical
presentation. Nadai (1950) systematically studied the theory of
plastic flow in solids and showed that slip-lines are orthogonal
families of logarithmic spirals around a hole or the tip of
a cylindrical notch. Hill (1950) provided the first rigorous
description of plastically deformed solids from a mathematical
point of view and provided the context of slip-line field theory in
terms of an upper bound of plastic work. Johnson et al. (1983)
summarized the slip-line field theory for plane strain conditions
and emphasized its practical applications. Recent advances in
numerical techniques have cultivated fusion of this theory with
adjacent domains, for example a phase-field model (Freddi and
Royer-Carfagni, 2016) correlating the generalized fracture theory
(Freddi and Royer-Carfagni, 2010) with the slip-line field of
plasticity based on variational principles.

This paper focuses on the uncertainty quantification of
analytical and numerical solutions of the cavity expansion
process within an entropic framework (Andresen, 2018).
Uncertainty arises due to the path dependence of the time
integration of dissipation and the resulting total amount of
work that is required to expand the cavity. This inherent
non-uniqueness of the plasticity problem (Bigoni and Hueckel,
1991a,b) has been dealt with in the past through upper and lower
bound theorems. We use the analytical solutions in comparison
with numerical solutions as an ideal illustrator for the validity
of fundamental theories, and the potential for benchmarking
numerical codes is discussed.

The upper and lower bound theorems are useful for
the quasi-static scenarios where time does not play a role and the
process of cavity expansion is independent of the rate of the
expansion mechanism. In many operations of impact studies

the rate effects are dynamic and influenced by material inertia
controlled by the expansion velocity (Masri and Durban, 2006).
We discuss here the case of slow deformation where kinetic
energy is negligible and the deformation is in the so-called
creeping flow regime. In this case, the classical thermomechanical
approach is expanded into a thermodynamic approach where
the evolution of the deformation is entirely controlled by the
time dependence of the thermal energy fluxes. We show in
this paper that the temperature equation is incorporating a
number of thermal-mechanical feedback mechanism which are
due to multi-physics phenomena such as phase transformations,
thermo-elastic effects or chemical reactions. For the creeping
flow regime the limit analysis design can be generalized into
a limit theorem for entropy production (Regenauer-Lieb et al.,
2010). This provides an expansion of the classical limit analysis
design into more complicated modeling scenarios that allow
assessment of multiphysics interactions and multiscale modeling
of the cavity expansion problem and other creeping flow elasto-
visco-plastic processes.

2. THERMODYAMICS ORIGINS OF PATH
DEPENDENCE

First, we go through a brief review of thermomechanics. State
variables are used to describe themathematical state of a dynamic
system, which means a state variable remains the same when the
system completes a complete cycle in the Entropy-Temperature
space, such as the Carnot cycle. Considering a continuum
element, there are a set of state variables that uniquely define the
thermo-mechanical state of this element, for example the strain
tensor ǫij (assuming small deformation), temperature T, internal

variables αk.
The first law of thermodynamics states that the change in the

internal energy of a closed system dU is equal to the amount of
work done to the system δW plus the amount of heat supplied to
the system δQ that is:

dU = δW + δQ. (1)

The internal energy U is a state function (i.e., dU is a proper
differential) while δW and δQ are not, implying path dependence
upon taking an integration over time. In the following we will
denote complete differential with respect to time by over-dots,
while we refer to over-tilde to denote incomplete differentials
where the path dependence of dissipation is embedded.

The second law of thermodynamics states that the increment
in heat supplied to the system δQ is no larger than the product
of absolute temperature T and entropy increase of the system
dS, that is the heat supply is bounded from above: δQ ≤ TdS.
Both T and S are state functions. If equality holds the process is
reversible, meaning the system, in this case a continuum element,
is in equilibrium or a steady state.

The total entropy increment of the system can be decomposed
into reversible and irreversible parts:

Ṡ = S̃rev + S̃irr (2)
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where the reversible component is usually referred to as the
“entropy supply,” meaning the entropy transfer inside the system
may lead to the transfer of entropy through reversible processes
from one portion to another of the interior defined as S̃rev =
Q̃/T. The irreversible component of the entropy increment is
referred to as “entropy production” and is non-negative by
definition: S̃irr ≥ 0. Entropy production is due to irreversible
processes via dissipation occurring within a continuum element.

The Helmholtz free energy 9 depends on state variables only,
and can be expressed by a simple function of internal energy,
absolute temperature and entropy:

9 = U − TS (3)

Then we have

U̇ = 9̇ + ṪS+ TṠ (4)

Hence, substituting TS̃rev for Q̃ in Equation (1) and using the
entropy decomposition in Equation (2) thus expanding TṠ =
T(S̃rev + S̃irr) the basic work equation can be written as

W̃ = 9̇ + ṪS+ TS̃irr (5)

where the first term on the right hand side of the equation denotes
the rate change in Helmholtz free energy; the second term
corresponds to the change in temperature during deformation
processes, which vanishes under isothermal conditions; the
third term defines the dissipated power, which is the source
of uncertainty brought into the system by different loading
paths/methods.

In other words, during a deformation process both the
Helmholtz free energy and the thermal changes are fully
integrable in time, however, the irreversible entropy production
is not. To overcome the uncertainty of path dependence it is
useful to consider an extremum value of the last term. We
emphasize in the following that there is no preference, from a
thermodynamic point of view, over the choice of a maximum or
minimum value. The uncertainty cannot be removed by either
choice without additional assumptions. Deformation problems
are inherently time dependent. However, with the assumption
of infinite time for the deformation process and no work free
plastic deformation the problem of uncertainty of dissipation is
bracketed from above.

Under infinite time condition the diffusion of heat away
from the deformation zone and the heat production through
mechanical work inside the deformation zone can be assumed
to reach a steady state equilibrium. If a steady state exists it
results in isothermal conditions for the zone of deformation.
This allows dropping the second term in Equation (5). If we
now choose the upper bound of the third term as the suitable
extremum one obtains the well-known maximum irreversible
entropy production or maximum dissipation assumption as the
suitable extremum. Ziegler (1983) did just this and visualized
both the first and last terms, i.e., the Helmholtz free energy
and the irreversible entropy production as potential functions.
He showed that the maximum irreversible entropy production
leads to the orthogonality principle. The hypothesis of maximum

irreversible entropy production functions applies to a wide
range of applications where general plasticity theory is involved.
The orthogonality assumption prescribes that the strain rate
vector is always normal to the yield surface. Although Ziegler’s
maximum entropy principle may still hold for certain materials
that demonstrate properties of weakly non-convex yield surface
or non-associated plastic flow (Houlsby and Puzrin, 2007), it
confronts difficulties when dealing with complex multi-physics
coupled systems. To do so, we explore the possibilities of
other entropic bounds in the light of Limit Analysis Design
considering two types of system constraints. In what follows we
first summarize the classical limit theorems, then apply them to
the cavity expansion problems and finally suggest to extend the
theorems for generalized THMC processes.

3. LIMIT THEOREMS: THE CASE OF
CAVITY EXPANSION

3.1. Mathematical Description of Bounding
Theorems
Limit analysis is widely used in many engineering design
problems that are subject to static or dynamic mechanical
loadings, due to its advantage of providing a quick estimate of
critical values without full simulation of the process. Bounding
theories for the mechanics of deformable bodies are based on the
virtual work laws, which origin from the concept of least action
required in a mechanical system (Hill, 1950; Johnson et al., 1983).
In this subsection, σij and vi are used to describe the involved
stress and velocity field inside rigid plastic bodies, yielding with
prescribed surface tractions acting on part of the surface ST and
prescribed velocities on part of the surface Sv.

The lower bound theorem or the static theorem states that
a load factor for which a distribution of bending moments can
be found which satisfy the equilibrium condition and the yield
condition is less than or at most equal to the true value of the
collapse load factor. Examples can be found in structural design
for buildings or bridges where the designers look for the lowest
bound of applied load to avoid any yield or collapse.

To derive the lower bound, we specify an equilibrium stress
field σ ∗, which satisfies the traction boundary conditions on ST
and nowhere violating the yield criterion. Virtual force is null
on Sv and can only generate work on ST where surface tractions
are applied. Then the principle of virtual work, also called the
principle of virtual force, gives

∫

ST

(Ti − T∗
i )vidS =

∫

V
(σij − σ ∗

ij )ǫ̇ijdV +
∫

SD

(k− τ ∗)[v]dS (6)

where the superscript ∗ denotes a force or stress field in
equilibrium. k denotes the yield stress in shear, τ ∗ the shear
component of σ ∗

ij , ǫ̇ij the strain rate, [v] the velocity discontinuity

on SD. On the right hand side of Equation (6), both terms are
non-negative, via the second law of thermodynamics and the
yield criterion τ ∗ ≤ k, respectively. Hence we have the lower
bound obtained from a statically admissible stress field:

∫

ST

(Ti − T∗
i )vidS ≥ 0, (7)
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The opposite engineering limit is encountered in situations
where, contrary to the interest in the lower bound case, overall
plastic yielding is desirable, for example in metal forming
operations. This results in the upper bound approach which is
extensively used in these applications as exact solutions for the
applied force to induce unconstrained plastic flow are difficult
to obtain. The upper bound theorem is also called a kinematic
theorem as it requires a kinematically admissible velocity field
that satisfies the boundary conditions. An additional constraint
is that it satisfies plastic volume conservation and it states that
the load factor obtained from the work equation written for any
arbitrarily assumed mechanism is greater or equal to the true
collapse load factor.

In the upper bound derivation, we specify a velocity field
v∗∗i , which does not necessarily maintain stress equilibrium but
satisfies the incompressibility requirements. The principle of
virtual work now gives

∫

S
Tiv

∗∗
i dS =

∫

V
σijǫ̇

∗∗
ij dV +

∫

SD

τ [v∗∗]dS (8)

where the superscript ∗∗ denotes a velocity or strain field
satisfying volume conservation (i.e., an incompressible body). Let
σ ∗∗
ij denote a stress field, not necessarily statically admissible but

required to produce plastic flow. Based on the second law of
thermodynamics,

(σ ∗∗
ij − σij)ǫ̇

∗∗
ij ≥ 0 (9)

Substituting Equation (9) and the yield criterion τ ≤ k into
Equation (8), we have

∫

S
Tiv

∗∗
i dS ≤

∫

V
σ ∗∗
ij ǫ̇∗∗ij dV +

∫

SD

k[v∗∗]dS (10)

Considering vi = v∗∗i on Sv, the upper bound is obtained:

∫

Sv

TividS ≤
∫

V
σ ∗∗
ij ǫ̇∗∗ij dV +

∫

SD

k[v∗∗]dS−
∫

ST

Tiv
∗∗
i dS (11)

In a summary, the lower bound solution for a pure mechanical
system, Equation (7), considers a statically admissible plastic
stress field and disregards the displacement field. It can be
obtained from imposing traction boundary conditions, while the
upper bound solution according to Equation (11) is derived from
velocity boundary conditions based on volume conservation.
In the discussion section we propose to generalize the lower
and upper bound principles for THMC processes in terms of
their entropy production, and the system constraints become
thermodynamic forces and thermodynamic fluxes, respectively.

3.2. Lower Bound Approach—Stress
Equilibrium
For the lower bound solution, based on Equation (7), we consider
a simple axisymmetric cavity expansion scenario with constant
force applied on the interior (r = a) and traction-free boundary
condition on the exterior (r = b), as illustrated in Figure 2. Plane
strain conditions are assumed.

FIGURE 2 | Sketch of a classical cavity expansion problem with constant

stress Pa applied on the cavity. The exterior boundary (r = b) is assumed

traction-free.

In the elastic zone (c < r < b),

σrr =
c2Pc

b2 − c2
(1−

b2

r2
), (12a)

σθθ =
c2Pc

b2 − c2
(1+

b2

r2
), (12b)

σzz = ν
2c2Pc

b2 − c2
. (12c)

The stress equilibrium equation gives

dσrr

dr
+

σrr − σθθ

r
= 0. (13)

In the plastic zone (a < r < c), the plane-strain von Mises
criterion gives

|σrr − σθθ | = 2k, (14)

Substituting Equation (14) into Equation (13), we have

σrr = 2k ln(
r

a
)− Pa, (15a)

σθθ = 2k ln(
r

a
)− Pa + 2k. (15b)

With the assumption of stress continuity on the interface of
the outer elastic zone and the inner plastic zone, we derive the
following relationships at r = c. Substituting Equation (12a) and
Equation (12b) into criterion (14), we have

P+c = (
b2 − c2

b2
) k, (16)

Frontiers in Materials | www.frontiersin.org 4 August 2018 | Volume 5 | Article 47

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Hu and Regenauer-Lieb Entropic Limit in Cavity Expansion

where Pc can be obtained via Equation (15):

P−c = −2k ln(
c

a
)+ Pa. (17)

With the assumption of stress continuity, i.e., P+c = P−c , we have

Pa

k
= 2 ln(

c

a
)+ (1−

c2

b2
). (18)

If we assume an infinite outer boundary (i.e., the outer radius b is
sufficiently large), c2/b2 vanishes. Hence,

c

a
= exp (

Pa

2k
−

1

2
). (19)

3.3. Upper Bound
Approach—Extremum/Work Principles
For the upper bound solution, we derive based on the slip-
line field theory of plasticity (Hill, 1950; Nadai, 1950). The
deformation of an ideal rigid-plastic body can be described
by hyperbolic partial differential equations. The characteristics
of the PDEs correspond to the slip-lines. For plane strain
von Mises plasticity, the slip lines are orthogonal lines
of sinistral (α-characteristics) and dextral (β-characteristics)
maximum shear. Along the characteristic lines, stress variation
is described by Hencky’s equations and velocity variation by
Geiringer’s equations. For cavity enlargement or shrinkage, radial
deformation is enabled by slip-lines in the form of logarithmic
spirals (numerical visualization can be found in Hu et al., 2017).

For this axisymmetric problem we have continuous shear all
over the plastic zone, and hence the total internal work rate is

determined by integration of σijǫ̇
pl
ij over the inner plastic domain.

The upper bound solution corresponds to a constant velocity
boundary condition (prescribed by Equation 11), i.e., v0 at the
cavity (r = a) as shown in Figure 3. Hence the expansion rate
at the outer boundary of the plastic domain (r = c) is a

c v0,
calculated from volume consistency.

The plastic strain rate along the α-line at point A is

ǫ̇
pl
Aα

=
( a
a+v0dt

· v0 − v0)/
√
2

v0dt/
√
2

= −
v0

a+ v0dt
(20)

where v0 denotes the radial velocity at r = a.
The plastic strain rate along the α-line at point C is

ǫ̇
pl
Cα

=
( c
c+ a

c v0dt
· a
c v0 −

a
c v0)/

√
2

a
c v0dt/

√
2

= −
a
c v0

c+ a
c v0dt

. (21)

Then, the plastic strain rate along the α-line at a generic point
within the plastic domain (a < r < c) can be written as

ǫ̇
pl
rα = −

a
r v0

r + a
r v0dt

(22)

Via integration over the domain, the rate of internal work along
the α-lines is derived:

W̃inα =
∫

�

k ·
a
r v0

r + a
r v0dt

d� = k

∫ 2π

0

∫ c

a

av0

r2 + av0dt
· r dr dθ

(23)
The internal work done along the β-lines should be identical to
the counterpart along the α-lines. Hence, the rate of total internal
work is

W̃in = 2W̃inα = 2π k a v0 ln(
c2 + av0 dt

a2 + av0 dt
) (24)

For infinitesimal dt, Equation (24) reduces to

W̃in = 2π k a v0 ln(
c2

a2
) (25)

The total external work rate can be written as

W̃ex = Pav0(2πa)− Pc(
a

c
v0)(2πc) (26)

The upper bound approach assumes

W̃in = W̃ex (27)

Recall that Pc = k (see Equation 16), given the outer
radius of the entire zone b is sufficiently large. Equation (27)
leads to

c

a
=

√

exp (
Pa

k
− 1) (28)

which coincides with the lower bound solution Equation (19).

4. RELAXING ISOTHERMAL CONDITIONS

In non-isothermal conditions analytical solutions are difficult
to derive as we not only need to consider the Continuity
Equation and Momentum Conservation but also add a third
equation of Energy Balance considering constraints on entropic
evolution. This can lead to highly dynamic phenomena due to
energy feedback. However, in terms of uncertainty quantification
of the deformation process, the principles of limit analysis
design can still be used in a rate formulation. The concept of
upper and lower bounds of elasto-plastic work is then turned
into an upper/lower bound of entropy production (Regenauer-
Lieb et al., 2010) for the elasto-visco-plastic deformation. The
assessment of uncertainty of the solution due to the time
dependence of the problem can be obtained from numerical
studies where thermodynamic flux boundary conditions provide
a maximum of entropy production and thermodynamic force
boundary conditions yield a minimum of entropy production
(Regenauer-Lieb et al., 2014). The incorporation of the entropic
evolution can be expressed through the time dependence
in the entropic evolution equation. The simplest form of
the relationship between the thermodynamic forces (e.g.,
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FIGURE 3 | Zoom-in of the inner plastic zone (a < r < c) with constant velocity boundary conditions (i.e., the upper bound approach). The velocity distribution around

a circular cavity is a radial expansion. This expansion is enabled by slip lines in the form of logarithmic spirals: orthogonal lines of α-characteristics and

β-characteristics for plane strain von Mises plasticity. The radial velocity at point A (a random point on the interior r = a) is assumed v0, and the radial velocity at point

C is (a/c)v0 via the hodograph solutions from Johnson et al. (1983).

temperature difference) and fluxes (e.g., heat flow) in 1-D is the
following equation.

∂T

∂t
= cT

∂2T

∂z2
+

χ
(

ρCp

)

m

σijǫ̇ij (29)

where T is the temperature, cT the thermal diffusivity, Cp

the specific heat capacity, ρ the density and ( )m meaning a
possible mixture of phases. χ denotes the proportion of the
mechanical work dissipated into heat, the so-called Taylor-
Quinney coefficient expressing the fraction of the mechanical
work that is turned into heat. σij and ǫ̇ij denote the stress and
the strain rate, respectively. The isothermal conditions used in
the above discussed quasistatic thermomechanics assumptions
for upper and lower bounds of plastic work are hence defined by:

∂T

∂t
= 0 (30a)

cT
∂2T

∂z2
= −

χ
(

ρCp

)

m

σijǫ̇ij (30b)

Such condition is reached only after sufficient time has been
given to the system to equilibrate. Equilibration in terms of
shear heating and heat transfer is achieved when the heat
production is exactly in equilibrium with the heat conduction.
The approximated time scale to reach these conditions can be
derived from the assumption that the heat source is the center
of the shear zone and LT is the characteristic diffusion length of
a heat pulse where according to the error function solution the
heat production and diffusion terms are in equilibrium (see also
in Regenauer-Lieb et al., 2013).

Due to the symmetry of this problem, we consider
a scenario of an instantaneous heating in a semi-infinite
half-space extending to infinity in the z-direction with a
uniform initial temperature of T1 in the half-space. A
temperature of T0 is suddenly applied and maintained on
the horizontal surface. The far-field boundary condition is
assumed remaining T → T1 at x → ∞. In order
to describe the temporal and spatial propagation of this
diffusive heat pulse, we define a dimensionless temperature θ as
follows

θ =
T − T1

T0 − T1
= erfc

(

z

2zd

)

(31)

where erfc (η) is the complementary error function defined as

erfc (η) = 1−
2

√
π

∫ η

0
e−ξ2dξ (32)

and zd =
√
cT t is used to represent the thermal diffusion

distance considering the nature of error function distribution. To
characterize heat localization in the shear zone (i.e., the vicinity
of the horizontal boundary in the semi-infinite half-space case),
we consider a thermal diffusion length scale of z = LT = 2

√
cT t,

where θ(z) ≈ 0.84. Hence the corresponding characteristic time
scale of thermal diffusion can be expressed as

tTd =
LT

2

4cT
(33)

There exists a second time scale that defines another extremum
of the thermal-mechanical coupling. This is the time scale
for the adiabatic limit ta. The adiabatic limit can be derived
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by setting the diffusion term in Equation (29) to zero,
that is

∂T

∂t
=

χ
(

ρCp

)

m

σijǫ̇ij (34)

As emphasized by Gruntfest (1963) the adiabatic process is in
its very nature thermally unstable after an adiabatic runaway
time scale ta of heating process triggered by shear heating which
follows from Equation (34) to be:

ta =
(

ρCp

)

m
Tref

χσijǫ̇ij
(35)

where Tref is the background ambient reference temperature
outside the adiabatic shear band.

The ratio of the characteristic diffusional cooling time scale tTd
of Equation (33) and the explosive adiabatic time scale ta defines
the Gruntfest number:

Gr =
tTd

ta
=

1

4
L2T

χσijǫ̇ij

kTref
(36)

where k = cT
(

ρCp

)

m
is the thermal conductivity of the material.

Between these time scales the deformation process can either
be continuous creep or localized creep. Gruntfest (1963) showed
that a critical Gruntfest number exists where the competition
between the two processes (corresponding to the time scale of
diffusion of heat away from the creeping zone and the time scale
for thermal weakening of the creeping zone) leads to a creep
localization phenomenon. The dual possible material response
after reaching the bifurcation point results in the thermodynamic
uncertainty of the deformation problem. Although our cavity
expansion process is in the creeping flow regime and does not
feature dynamic effects in the sensu stricto as in cavity expansion
problem for impact studies (Masri and Durban, 2006), the
Gruntfest number in its nature defines a non-dimensional time
scale which introduces an additional time dependent dynamics
of localization processes in the creeping flow regime.

We are now in a position to apply this important conclusion
to the scenarios of radial cavity expansion. This insight can be
used to illustrate the infinite time scale assumption of the classical
thermal-mechanical approach of plasticity theory. Equation (29)
is extended to be

∂T

∂t
= cT∇2T +

χ
(

ρCp

)

m

σijǫ̇ij (37)

where ∇2 denotes the Laplacian, which is expressed as ∇2 =
∂2

∂r2
+ 1

r
∂
∂r +

1
r2

∂2

∂θ2
with 2-D cylindrical coordinates. A Gruntfest

number of zero equates to instantaneous time scale of the
diffusive limit, i.e., infinite time scale for the adiabatic limit,
or for a finite adiabatic time scale a zero time scale for
diffusion. The classical thermo-mechanical solution describes
this idealized limit with the continuous radial expansion of
the cavity where the plastic zone grows continuously and

axisymmetrically without any localized dissipation, as shown
in Figure 4A calculated for zero Gruntfest number. The other
solution is the cavity expansion where localized shear zones
grow outwards in the plastic zone and the cavity expands
along the major heat lines. This condition is reached at the
critical Gruntfest number and is shown in Figure 4B. The
numerical examples illustrated in Figure 4 are temperature
profiles of a quarter of a hollow cylinder, which is subject to
a uniformly distributed internal pressure and free of traction
on the external boundary. Plane strain conditions are assumed.
Small random thermal perturbation is implemented as the initial
condition for the visualization of localized heat dissipation (i.e.,
the logarithmic spirals shown in Figure 4B with Gr = 5.0).
The simulation results are obtained via fully coupled finite
element implementation in a MOOSE (Gaston et al., 2009)
based application, REDBACK, following our previous numerical
studies in Hu et al. (2017).

The dynamics of the creeping flow process relies on an
interaction of discrete material length scales (related to energy
eigenstates of the materials) with the discrete length scales
introduced by the geometry. In the simple cavity expansion
problem it is a positive selection of shear bands on multiple
reflections on the 2πr cylindrical symmetry of the inner and
outer radius of the cavity and limit of the plastic zone,
respectively. An in-depth study of the effect of geometry and
the constructive interference of localization bands has been
performed but is beyond the scope of this paper and will be
presented elsewhere. This contribution is concerned with the
more fundamental problem of implications of length scales
stemming from THMC coupling alone. The problem of these
characteristic material length scales defining the steady state
width of the localization bands will be discussed next.

5. DISCUSSION

This paper presents an approach that can be used to expand
the classical thermo-mechanical quasistatic approach into a
fully coupled multiscale and multiphysics framework using the
example of axisymmetric cavity expansion. In the simplified case
of von Mises rheology and ideal plasticity (no weakening or
hardening) we have shown that limit analysis design delivers
an upper bound of the plastic work that coincides with the
value estimated from the lower bound method. The amount of
work required to expand the circular cavity therefore has no
uncertainty.

A different situation arises if strain-weakening or hardening
laws are added. We calculated the strain weakening of the system
as a function of the thermal evolution. This allowed us to replace
the parametrization of the problem in terms of experimentally
derived strain hardening into a physics derived thermal energy
feedback problem. This is particularly useful for the conditions
where laboratory experiments are difficult to perform or when the
conditions beyond the range of laboratory constraints are under
investigation.

If a cavity expansion problem for an engineering time scale
of 20 years is supposed to be investigated then a physics-based
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FIGURE 4 | Temperature profiles obtained from implementing small random thermal perturbation as the initial condition: (A) Gr = 0, in which the plastic zone grows

continuously and axisymmetrically without any localization of heat; (B) Gr = 5.0, where shear instabilities emerge and build up, forming major heat lines (following the

traces of logarithmic spirals) which enable the expansion of the cavity.

formulation with uncertainty quantification as presented here is
mandatory. This is because it is difficult to constrain uncertainty
of hardening laws through controlled experiments on such long
time frame. An example is the hole expansion due to creep of the
pressure vessel of a nuclear reactor that may lead to a potential
instability. Another extreme example is the cavity expansion
problem of a magma chamber where creep on geological time
scales of million years occurs, and temperatures are higher than
thousand Celsius and pressures can be in the GPa range. The
uncertainty quantification of these two example problems of
cavity expansion is of pivotal interest to human safety and the
proposed framework allows an assessment of a narrowed-down
stability regime. We note that in these scenarios there exists
uncertainty due the built-in time-evolution of the processes
and hence the upper and lower bounds no longer coincide.
Therefore, a comprehensive analysis based on THMC process
understanding is required.

In the following subsections we propose to extend the classical
limit analysis design technique to a more generalized entropy
production limit analysis for THMC processes. In this sense
evaluation of upper and lower bounds of the deformation work
are interpreted as upper and lower bounds of the entropy
production (see Table 1).

5.1. Multiphysics Feedbacks
In order to estimate entropic bounds of THMC processes it
is first necessary to evaluate the dominant physics driving the
localization phenomenon. In the example discussed above we
have illustrated how the thermal reaction-diffusion equation
leads to a localization phenomenon at critical Gruntfest number.
We can now generalize this finding due to the similarity of the
partial differential equation for reaction-diffusion ofmultiphysics
feedback. If a chemical process leads to instability then the
chemical reaction-diffusion process drives instability at critical
Damköhler number. This in turn defines through Equation (33)
the critical time and length scale for the localization phenomenon
where the thermal diffusivity is replaced by the chemical

TABLE 1 | Multi-physics boundary conditions to calculate upper and lower limits

of entropy production from each length scale.

Entropic uncertainty principle

Upper Bound Lower Bound

(thermodynamic flux BC) (thermodynamic force BC)

T Constant heat flow Constant temperature difference

H Constant fluid flow Constant pressure difference

M Constant velocity Constant force

C Constant chemical flux Constant chemical potential difference

Maximum and minimum entropy production correspond when integrated over time for a
steady state to the upper and lower bounds of mechanical work.

diffusivity. The same applies for fluid pressure diffusion where
a critical Lewis number defines instability and the steady
state limit for formation of shear bands is defined again by
Equation (33), however, now replacing thermal diffusivity with
pressure diffusivity. This leads to a cascade of length scales where
the smallest diffusional length scale corresponds to the chemical-
reaction diffusion process followed by the fluid reaction-diffusion
equation followed by the thermal reaction diffusion equation
(Alevizos et al., in press; Regenauer-Lieb et al., in press).

5.2. Localization Length Scales
Multiscale and multiphysics problems do not lend themselves
to an analytical assessment and the extension of the limit
analysis design to an entropic uncertainty principle is particularly
appealing. Numerical tools need to be used for solving the
coupled deformation problem. Here we identify two cases: one
in which the three localization length scales are far apart and
localization phenomenon based on chemical length scales LC is
substantially smaller than the hydrous length scale LH and the
thermal length scale: LC ≪ LH ≪ LT . In this case it is safe to
assume that there is no cross-scale coupling and the material
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parameters for the next scale up can be derived from a series
of calculation using the upper and lower bounds of entropy
production. The suggested framework is shown in Table 1. The
material parameters for an immediate larger scale can then
be evaluated from an explicit calculation of the uncertainties
of the material parameters at the lower scale. This multiscale
coupling leads to a steady deformation process similar to the
classical theories of thermomechanics but controlled by elasto-
visco-plastic creep (Alevizos et al., in press).

The other case of overlapping localization phenomena where
LC ≤ LH ≤ LT requires explicit calculation of the full cross-
scale thermo-hydro-chemo-mechanical problem where feedback
mechanisms interact with each other. In this case the fully
coupled matrix of all reaction-diffusion equations needs to be
solved numerically with a multiscale code and the upper and
lower bounds of the largest energetic driver is used for the
evaluation of the large scale system. The full cascade of reaction-
diffusion equations from Fick’s to Darcy’s to Fourier’s is likely to
be stable for the upper bound but highly unstable with complex
dynamics for the lower bound conditions (Regenauer-Lieb et al.,
in press).

5.3. Entropic Bounds of THMC Processes
Plasticity theory describes the mechanical problem (M) and
the traction boundary condition can be identified in the
thermodynamic sense as a thermodynamic force boundary
conditions. Generalized thermodynamic force boundary
conditions for THC processes are: a difference in temperature,
pressure and chemical potential for thermal, hydrological and
chemical processes, respectively (Regenauer-Lieb et al., 2010).
With this assumption the lower bound theorem translates into
a principle of minimum entropy production. On the other
extreme, the upper bound theorem corresponds to the principle
of maximum entropy production, which can be obtained from
imposing at the boundary a constant thermodynamic flux, e.g.,
a constant velocity for the mechanical problem. Corresponding
fluxes for THC are heat flow, fluid flow velocity and chemical
flow, respectively (see Table 1).

6. CONCLUSIONS

We have shown that the methods of evaluating uncertainties in
classical limit analysis design can be extended to the complex
multiphysics, multiscale problems encountered in nature and

engineering applications. For the more complicated cases the
upper bound of plastic work corresponds to the well known
maximum entropy production principle (Ziegler, 1983) and

the lower bound corresponds to the minimum of entropy
production. These bounds address the path dependence problem
of the integration over time and can be used to validate fully
coupled numerical solution of multiphysics problems. We chose
to illustrate the basic principles by the simple cylindrical cavity
expansion case, which is an ubiquitous problem in a broad
context of engineering and provides an ideal benchmark for
testing numerical approaches developed for THMC coupling.
Its application to black shale (Figure 1) illustrates the analytical
solution of shear banding in the form of logarithmic spirals.
The shear localization phenomenon can be understood as a
thermo-mechanical feedback mechanism (Figure 4). We have
illustrated a framework of thermodynamic uncertainty principles
that is useful for THMC coupling simulations and shown its
relationship to the classical limit analysis design. The proposed
method allows estimation of risk of failure for conditions that
are outside the realm of laboratorymeasurements thus expanding
rock mechanics approaches into adjacent fields such as geological
and geodynamic scenarios.

Future work will address the competition between the
material length scales, identified in this work to be characteristic
properties of the reaction-diffusion equation underpinning the
instability, and the geometrical length scales of the coupled
deformation problem. This interaction can lead to oscillatory
behavior during the process of deformation through constructive
and destructive interference between two adjacent length scales.
Following on more complicated geometries will be investigated
and the suggested framework be applied to real life engineering
and geological problems.
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