125 research outputs found

    Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions

    Get PDF
    The mitochondrial contact site and cristae organizing system (MICOS) is crucial for the formation of crista junctions and mitochondrial inner membrane architecture. MICOS contains two core components. Mic10 shows membrane-bending activity, whereas Mic60 (mitofilin) forms contact sites between inner and outer membranes. Here we report that Mic60 deforms liposomes into thin membrane tubules and thus displays membrane-shaping activity. We identify a membrane-binding site in the soluble intermembrane space-exposed part of Mic60. This membrane-binding site is formed by a predicted amphipathic helix between the conserved coiled-coil and mitofilin domains. The mitofilin domain negatively regulates the membrane-shaping activity of Mic60. Binding of Mic19 to the mitofilin domain modulates this activity. Membrane binding and shaping by the conserved Mic60-Mic19 complex is crucial for crista junction formation, mitochondrial membrane architecture and efficient respiratory activity. Mic60 thus plays a dual role by shaping inner membrane crista junctions and forming contact sites with the outer membrane

    Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth

    Get PDF
    Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F(1)F(o)-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10(ATPsynthase), not on Mic10(MICOS). We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F(1)F(o)-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth

    Central role of mic10 in the mitochondrial contact site and cristae organizing system

    Get PDF
    The mitochondrial contact site and cristae organizing system (MICOS) is a conserved multi-subunit complex crucial for maintaining the characteristic architecture of mitochondria. Studies with deletion mutants identified Mic10 and Mic60 as core subunits of MICOS. Mic60 has been studied in detail; however, topogenesis and function of Mic10 are unknown. We report that targeting of Mic10 to the mitochondrial inner membrane requires a positively charged internal loop, but no cleavable presequence. Both transmembrane segments of Mic10 carry a characteristic four-glycine motif, which has been found in the ring-forming rotor subunit of F1Fo-ATP synthases. Overexpression of Mic10 profoundly alters the architecture of the inner membrane independently of other MICOS components. The four-glycine motifs are dispensable for interaction of Mic10 with other MICOS subunits but are crucial for the formation of large Mic10 oligomers. Our studies identify a unique role of Mic10 oligomers in promoting the formation of inner membrane crista junctions

    Metastandard für den internationalen Austausch von MOOCs – der MOOChub als erster Prototyp

    Get PDF
    Der MOOChub ist eine Webseite, die weit über 700 Massive Open Online Courses (MOOCs) aus dem deutschsprachigen Raum von insgesamt neun unterschiedlichen Partner:innen listet. Damit eine solche Seite automatisiert aufgebaut werden kann, ist es notwendig, dass alle Partner:innen die Metadaten der Kurse in gleicher Weise beschreiben und verfügbar machen. Dieser Artikel beschreibt zunächst die Entstehung der Idee eines gemeinsamen Standards und wie dieser im Anschluss entwickelt worden ist. Das Ergebnis ist einerseits ein offen lizenzierter Quasi-Standard, der sich an üblichen Standards orientiert, und ein erster Prototyp, der sogenannte MOOChub, auf dem nun alle Kurse auffindbar und durchsuchbar sind. Abschließend wird über die nächsten möglichen und auch notwendigen Entwicklungen berichtet, die die Schnittstelle weiter optimieren sollen

    Human Hsp70 Disaggregase reverses Parkinson’s-linked α-Synuclein Amyloid Fibrils

    Get PDF
    Intracellular amyloid fibrils linked to neurodegenerative disease typically accumulate in an age-related manner, suggesting inherent cellular capacity for counteracting amyloid formation in early life. Metazoan molecular chaperones assist native folding and block polymerization of amyloidogenic proteins, preempting amyloid fibril formation. Chaperone capacity for amyloid disassembly, however, is unclear. Here, we show that a specific combination of human Hsp70 disaggregase-associated chaperone components efficiently disassembles α-synuclein amyloid fibrils characteristic of Parkinson’s disease in vitro. Specifically, the Hsc70 chaperone, the class B J-protein DNAJB1, and an Hsp110 family nucleotide exchange factor (NEF) provide ATP-dependent activity that disassembles amyloids within minutes via combined fibril fragmentation and depolymerization. This ultimately generates non-toxic α-synuclein monomers. Concerted, rapid interaction cycles of all three chaperone components with fibrils generate the power stroke required for disassembly. This identifies a powerful human Hsp70 disaggregase activity that efficiently disassembles amyloid fibrils and points to crucial yet undefined biology underlying amyloid-based diseases

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
    • …
    corecore