Single-photon sources based on optical parametric processes have been used
extensively for quantum information applications due to their flexibility,
room-temperature operation and potential for photonic integration. However, the
intrinsically probabilistic nature of these sources is a major limitation for
realizing large-scale quantum networks. Active feedforward switching of photons
from multiple probabilistic sources is a promising approach that can be used to
build a deterministic source. However, previous implementations of this
approach that utilize spatial and/or temporal multiplexing suffer from rapidly
increasing switching losses when scaled to a large number of modes. Here, we
break this limitation via frequency multiplexing in which the switching losses
remain fixed irrespective of the number of modes. We use the third-order
nonlinear process of Bragg scattering four-wave mixing as an efficient
ultra-low noise frequency switch and demonstrate multiplexing of three
frequency modes. We achieve a record generation rate of 4.6×104
multiplexed photons per second with an ultra-low g2(0) = 0.07, indicating
high single-photon purity. Our scalable, all-fiber multiplexing system has a
total loss of just 1.3 dB independent of the number of multiplexed modes, such
that the 4.8 dB enhancement from multiplexing three frequency modes markedly
overcomes switching loss. Our approach offers a highly promising path to
creating a deterministic photon source that can be integrated on a chip-based
platform.Comment: 28 pages, 9 figures. Comments welcom