88 research outputs found

    What are the important thresholds and relationships to inform the management of COTS? Draft report, 30 June 2014

    Get PDF
    [Extract] The crown-of-thorns seastar (COTS), Acanthaster planci, is one of the main contributors to declines in coral cover on the Great Barrier Reef (GBR), and remains one of the major acute disturbances on coral reefs throughout much of the Indo-Pacific. The aim of this project is to investigate important ecological thresholds and relationships to inform the management of COTS. To do this we use a range of modelling methods as well as analyses of all available empirical data. Data from the management program removals of COTS provide near-real-time CPUE (Catch-Per-Unit-Effort) data that can be used to inform management

    Harvest Strategies for the Torres Strait Finfish fishery

    Get PDF
    The project has provided a foundation and framework for a Harvest Strategy for both Spanish mackerel and coral trout, with both fish species supported within the project by stock assessments. An update to the Spanish mackerel assessment was conducted with direct feedback between the outputs and diagnostics of the assessment informing the process of harvest strategy development. Similarly, for coral trout the initial harvest strategy resourced the first preliminary assessment of the coral trout, also funded as part of the project. Project staff worked closely with management agencies and stakeholders, using formal committee meetings inputs and advice, which fulfilled the requirements of the guidelines for developing harvest strategies. The versions of the harvest strategies presented herein are correct up the date of the submission of the report. The current versions of the harvest strategies are adaptive, as various components need checking based on updated assessments and any new information. The project team have made a series of recommendations for future updates required to progress to the full and complete harvest strategies

    Assessing different causes of crown-of-thorns starfish outbreaks and appropriate responses for management on the Great Barrier Reef

    Get PDF
    The crown-of-thorns starfish Acanthaster planci (COTS) has contributed greatly to declines in coral cover on Australia's Great Barrier Reef, and remains one of the major acute disturbances on Indo-Pacific coral reefs. Despite uncertainty about the underlying causes of outbreaks and the management responses that might address them, few studies have critically and directly compared competing hypotheses. This study uses qualitative modelling to compare hypotheses relating to outbreak initiation, explicitly considering the potential role of positive feedbacks, elevated nutrients, and removal of starfish predators by fishing. When nutrients and fishing are considered in isolation, the models indicate that a range of alternative hypotheses are capable of explaining outbreak initiation with similar levels of certainty. The models also suggest that outbreaks may be caused by multiple factors operating simultaneously, rather than by single proximal causes. As the complexity and realism of the models increased, the certainty of outcomes decreased, but key areas that require further research to improve the structure of the models were identified. Nutrient additions were likely to result in outbreaks only when COTS larvae alone benefitted from nutrients. Similarly, the effects of fishing on the decline of corals depended on the complexity of interactions among several categories of fishes. Our work suggests that management approaches which seek to be robust to model structure uncertainty should allow for multiple potential causes of outbreaks. Monitoring programs can provide tests of alternative potential causes of outbreaks if they specifically monitor all key taxa at reefs that are exposed to appropriate combinations of potential causal factors

    Reconciling end-to-end and population concepts for marine ecosystems

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 83 (2010): 99-103, doi:10.1016/j.jmarsys.2010.06.006.The inherent complexities in the structure and dynamics of marine food webs have led to two major simplifying concepts, a species-centric approach focused on physical processes driving the population dynamics of single species and a trophic-centric approach emphasizing energy flows through broad functional groups from nutrient input to fish production. Here we review the two approaches and discuss their advantages and limitations. We suggest that these concepts are complementary: their applications involve different time scales and distinct aspects of population and community resilience, but their integration is necessary for ecosystem-based managementWe acknowledge NOAA-CICOR award NA17RJ1233 (J.H. Steele) and NSF award OCE0217399 (D.J. Gifford)

    Construction kits or virtual worlds; management applications of E2E models

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 109/110 (2013): 103-108, doi:10.1016/j.jmarsys.2011.10.016.We review briefly the diversity of modeling activity that comes under the rubric of end-to-end (E2E) models, but the focus of this paper – of joint concern to researchers and to managers - is on applications to management and decision making. The models and applications span a range from “construction kits” that identify particular management issues and use comparisons across ecosystems; to “virtual worlds” that immerse managers in the details of strategic evaluations for particular systems. The general conclusion is that “application” is not a straightforward transition from theory to practice but a complex interactive process.This review is based on the proceedings of a workshop, held at Woods Hole Oceanographic Institution, 19-22 April 2010, as part of CAMEO (Comparative Analysis of Marine Ecosystem Organization), a program supported jointly by NOAA (U.S. National Oceanic and Atmospheric Agency) and NSF (U.S. National Science Foundation)

    Comparing species and ecosystem-based estimates of fisheries yields

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Fisheries Research 111 (2011): 139-144, doi:10.1016/j.fishres.2011.07.009.Three methods are described to estimate potential yields of commercial fish species: (i) single-species calculation of maximum sustainable yields, and two ecosystem-based methods derived from published results for (ii) energy flow and for (iii) community structure. The requirements imposed by food-web fluxes, and by patterns of relative abundance, provide constraints on individual species. These constraints are used to set limits to ecosystem-based yields (EBY); these limits, in turn, provide a comparison with the usual estimates of maximum sustainable yields (MSY). We use data on cod and haddock production from Georges Bank for the decade 1993-2002 to demonstrate these methods. We show that comparisons among the three approaches can be used to demonstrate that ecosystem based estimates of yields complement, rather than supersede, the single-species estimates. The former specify the significant changes required in the rest of the ecosystem to achieve a return to maximum sustainable levels for severely depleted commercial fish stocks. The overall conclusion is that MSY defines changes required in particular stocks, whereas EBY determines the changes required in the rest of the ecosystem to realize these yields. Species specific MSY only has meaning in the context of the prey, predators and competitors that surround it.We acknowledge NSF awards OCE081459 (to DJG) and OCE0814474 (to JHS)
    corecore