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Abstract—We present an efficient technique for design optimization 
of antenna structures. Our approach exploits coarse-discretization 
electromagnetic (EM) simulations of the antenna of interest that are 
used to create its fast initial model (a surrogate) through kriging. 
During the design process, the predictions obtained by optimizing the 
surrogate are verified using high-fidelity EM simulations, and this 
high-fidelity data is used to enhance the surrogate through co-kriging 
technique that accommodates all EM simulation data into one 
surrogate model. The co-kriging-based optimization algorithm is 
simple, elegant and is capable of yielding a satisfactory design at a 
low cost equivalent to a few high-fidelity EM simulations of the 
antenna structure. To our knowledge, this is a first application of co-
kriging to antenna design. An application example is provided. 

I. INTRODUCTION 
Antenna design is a challenging process that involves the 

adjustment of dimensional and material parameters in order to 
satisfy various, often conflicting objectives concerning antenna 
figures [1]. In many cases, interactions with antenna 
environment (e.g., housing, connectors, etc.) can be influential 
so they have to be taken into account. Due to this, as well as 
because of the lack of reliable theoretical (closed form) models 
for many antenna structures (e.g., DRAs [2]), electromagnetic 
(EM)-simulation-driven design may be the only option. 

The major bottleneck of EM-driven design is its high 
computational cost. High-fidelity antenna simulation may take 
a few hours so that straightforward approaches employing the 
EM solver directly in an optimization loop are impractical. 
Efficient design can be realized using surrogate models, fast 
and yet reasonably accurate representations of the structure of 
interest. The surrogate can be created by approximating high-
fidelity EM data using, e.g., polynomials [3], kriging [3] or 
neural networks [4]. However, obtaining an accurate model 
requires dense sampling of the design space (hundreds or 
thousands of sampled may be necessary), which makes sense 
for multiple-use library models but not for ad-hoc 
optimization. Techniques such as space mapping (SM) [5] and 
tuning [6] are much more efficient because they construct the 
surrogate using an underlying (physically-based) coarse 
model. Unfortunately, applicability of these techniques for 
antenna design is limited. SM relies on a fast coarse model, 
typically, circuit equivalent [5]. Reliable circuit models are not 
available for many important types of antenna. On the other 
hand, tuning is not directly applicable for radiating structures. 

Here, for the first time, we consider application of co-
kriging [7] for antenna design. Co-kriging allows us to create 
the surrogate using mostly coarse-discretization EM 
simulations (much cheaper than the high-fidelity ones) and 
limited amount of high-fidelity EM data that is accumulated 
during the iterative process of optimizing and improving the 
surrogate. Co-kriging is a natural way to blend EM data of 
different fidelity, which allows us to yield an optimized design 
at a low cost corresponding to a few high-fidelity antenna 
simulations. The operation and performance of our technique 
is demonstrated using a wideband monopole antenna. 

II. ANTENNA DESIGN USING CO-KRIGING 
A. Design Problem and Antenna Models 

The antenna design task can be formulated as a nonlinear 
minimization problem of the form x* = argmin{x : U(Rf(x))}, 
where Rf(x) ∈ Rm is the response vector of a high-fidelity antenna 
model; U is a given objective function; x ∈ Rn is a vector of 
design variables. In this work, we use coarse-discretization EM 
simulations (low-fidelity model denoted as Rc) to construct the 
antenna surrogate. Rc is faster than Rf  but not as accurate. 

B. Kriging and Co-Kriging Interpolation 
Kriging is a popular technique to interpolate deterministic 

noise-free data [8]. Let XB.c = {xc
1, xc

2, …, xc
N.c} be the training 

set and Rc(XB.c) the associated coarse-discretization model 
responses. The kriging interpolant is derived as, 

1
. .( ) ( ) ( ( ) )s KR f B cM r X Fα α−= + ⋅Ψ ⋅ −R x x R (1) 

where M and F are Vandermonde matrices of the test point x and 
the base set XBK, respectively. The coefficient vector α is 
determined by Generalized Least Squares (GLS). r(x) is an 1×NKR 
vector of correlations between the point x and the base set XB.KR, 
where the entries are ri(x) = ψ(x,xc

i), and Ψ is a Nc×Nc correlation 
matrix, with the entries given by Ψi,j = ψ(xc

i, xc
j). In this work, the 

exponential correlation function is used, i.e., 
ψ(x,y) = exp(∑k=1,...,n –θk|xk–yk|), where the parameters θ1, ..., θn are 
identified by Maximum Likelihood Estimation (MLE). The 
regression function is chosen constant, F = [1 ... 1]T and M = (1). 

Co-kriging [7] is a type of kriging where the Rf and Rc 
model data are combined to enhance the prediction accuracy. 
Co-kriging is a two-steps process: first a kriging model Rs.KRc 
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of the coarse data (XB.c,Rc(XB.c)) is constructed and on the 
residuals of the fine data (XB.f,Rd) a second kriging model Rs.KRd 
is applied, where Rd = Rf(XB.f) – ρ⋅Rc(XB.f). The parameter ρ is 
included in the MLE. Note that if the response values Rc(XB.f) 
are not available, they can be approximated by using the first 
kriging model Rs.KRc, namely, Rc(XB.f) ≈ Rs.KRc(XB.f). The 
resulting co-kriging interpolant is defined as 

1( ) ( ) ( )s dM r Fα α−= + ⋅Ψ ⋅ −R x x R  (2) 
where the block matrices M, F, r(x) and Ψ can be written in 
function of the two separate kriging models Rs.KRc and Rs.KRd: 
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where (Fc,σc,Ψc,Mc) and (Fd,σd,Ψd,Md) are matrices obtained 
from the kriging models Rs.KRc and Rs.KRd, respectively. In 
particular, σc

2 and σd
2 are process variances, while Ψc(⋅,⋅) and 

Ψd(⋅,⋅) denote correlation matrices of two datasets with the 
optimized θ1, ..., θn parameters and correlation function of the 
kriging models Rs.KRc and Rs.KRd, respectively. 

C. Design Optimization Procedure 
The proposed design optimization procedure can be 

summarized as follows. 
1. Set the initial design xinit; Optimize Rc to find x(0) – initial 

design for the co-kriging optimization; 
2. Sample Rc in the vicinity of x(0) to obtain (XB.c,Rc(XB.c)); 
3. Set i = 0; 
4. Evaluate Rf at x(i); Create a co-kriging model Rs

(i) as in (2) 
using (XB.c,Rc(XB.c)) and (XB.f,Rf(XB.f)) with XB.f = {x(0),…, x(i)}; 

5. Find x(i+1) by optimizing Rs
(i); Set i = i + 1; 

6. If ||x(i) – x(i–1)|| < ε (here, ε = 10–2) terminate, else go to 5; 
Note that the co-kriging model is created in the vicinity of the 

Rc optimum, which is the best approximation of the optimal 
design we can get at a low cost. This allows us to use a limited 
number of Rc samples while creating the surrogate. The size of 
the vicinity is typically 5 to 20 percent of the design space. The 
initial co-kriging surrogate is created using only one evaluation of 
Rf and then updated using the designs obtained by optimizing the 
surrogate. By definition Rs

(i)(x(k)) = Rf(x(k)) for k = 0,…,i, so that 
the surrogate accuracy constantly improves in the vicinity of the 
expected optimum upon the algorithm convergence. 

III. DESIGN EXAMPLE 
Consider a monopole antenna shown in Fig. 1. The design 

variables are x = [l1 l2 l3 w1]T. The input microstrip of the 
monopole is fed through an edge mount SMA connector. 
Simulation time of Rc (223,728 mesh cells) is 3 min, and that of 
Rf (1,733,892 mesh cells) is 60 min. Both models are evaluated 
using the transient solver of CST Microwave Studio [9]. The 
design specifications for reflection are |S11| ≤ –15 dB for 3 GHz to 
6 GHz. The initial design is xinit = [20 2 0 25]T mm. 

The antenna was optimized using the co-kriging-based 
algorithm of  Section II.C. The approximate optimum of Rc, x(0) = 
[22.1 3.44 0.0 19.1]T, is obtained at the cost of 80 evaluations of 

Rc. The co-kriging surrogate is created in the region [x(0) – δ, x(0) + 
δ], with δ = [1 0.5 0.5 1]T, using 50 Rc samples. The co-kriging 
optimization process is accomplished in 5 iterations with the 
optimized design x(5) = [21.56 3.08 –0.099 20.11]T. Figure 2 
shows the responses of Rc and Rf at xinit, x(0) and x(5). The total 
design cost (Table I) corresponds to only 11 evaluations of Rf. 
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                  (a)         (b) 
Fig. 1. Wideband monopole: (a) 3D view; (b) top view. The housing is shown 
transparent. 
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                   (a)          (b) 
Fig. 2. Wideband monopole: (a) responses of the low-fidelity model at xinit (⋅⋅⋅) 
and x(0) (- - -) and the response of the high-fidelity model at xinit (—); (b) 
response of the high-fidelity model at the final design (—). 
 

TABLE I.  WIDEBAND MONOPOLE: DESIGN COST 
Algorithm  

Component 
Number of Model 

Evaluations 
CPU Time 

Absolute Relative to Rf 
Evaluation of Rc 

1 130 × Rc 390 min 6.5 
Evaluation of Rf

 2 5 × Rf 300 min 5.0 
Total cost N/A 690 min 11.5 

1 80 evaluations to optimize Rc and 50 evaluations to set up the co-kriging model. 
2 Excludes evaluation of Rf at the initial design. 

 


